Skip to main content
Log in

About the Uniform Hölder Continuity of Generalized Riemann Function

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the uniform Hölder continuity of the generalized Riemann function \({R_{\alpha,\beta} \,\,{\rm (with}\,\, \alpha > 1 \,\,{\rm and}\,\, \beta > 0}\)) defined by

$$R_{\alpha,\beta}(x) = \sum_{n=1}^{+\infty} \frac{\sin(\pi n^\beta x)}{n^\alpha},\quad x \in \mathbb{R},$$

using its continuous wavelet transform. In particular, we show that the exponent we find is optimal. We also analyse the behaviour of \({R_{\alpha,\beta} \,\,{\rm as}\,\, \beta}\) tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55. New York (1972)

  2. Boichu, D.: Analyse 2-microlocale et développement en série de chirps d’une fonction de Riemann et de ses généralisations, Colloquium Mathematicum vol. LXVII(2) (1994)

  3. Chamizo F., Ubis A.: Multifractal Behavior of Polynomial Fourier Series. Adv. Math. 250, 1–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chamizo F., Ubis A.: Some Fourier series with gaps. J. Anal. Math. 101, 179–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

  6. du Bois-Reymond P.: Versuch einer Klassifikation der willkürlichen Funktionen reeller Argumente nach ihren Änderungen in den kleinsten Intervallen. J. für die reine und andewandte Mathematik 79, 21–37 (1875)

    Google Scholar 

  7. Gerver J.L.: On Cubic Lacunary Fourier Series. Trans. Am. Math. Soc. 355(11), 4297–4347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerver J.L.: The Differentiability of the Riemann Function at Certain Rational Multiples of π. Am. J. Math. 92, 33–55 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hardy G.H.: Weierstrass’s Non-Differentiable Function. Trans. Am. Math. Soc. 17, 301–325 (1916)

    MATH  Google Scholar 

  10. Hardy G.H., Littlewood J.E.: Some Problems of Diophantine Approximation (II). Acta Math. 37(1), 193–239 (1914)

    Article  MathSciNet  Google Scholar 

  11. Holschneider M.: Wavelets, an Analysis Tool, Oxford Mathematical Monographs. Oxford Science Publications (1995)

  12. Holschneider M., Tchamitchian P.: Pointwise Analysis of Riemann’s “Nondifferentiable” Function. Invent. Math. 105, 157–175 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Itatsu, S.: Differentiability of Riemann’s Function. In: Proceedings of the Japan Academy, Series A vol. 57(10), pp. 492–495 (1981)

  14. Jaffard S.: Pointwise and Directional Regularity of Nonharmonic Fourier Series. Appl. Comput. Harmon. Anal. 28, 251–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaffard S.: The Spectrum of Singularities of Riemann’s Function. Rev. Math. Iberoam. 12(2), 441–460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jaffard, S., Meyer, Y.: Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions. Mem. Am. Math. Soc. (Book 587) (1996)

  17. Jaffard, S., Meyer, Y., Ryan, R.D.: Wavelets: Tools for Science and Technologies, SIAM, (2001)

  18. Jaffard, S., Nicolay, S.: Space-Filling Functions and Davenport Series. Recent Developments in Fractals and Related Fields, 19–34 (2010)

  19. Johnsen J.: Simple Proofs of Nowhere-Differentiability for Weierstrass’s Function and Cases of Slow Growth. J. Fourier Anal. Appl. 16, 17–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luther W.: The Differentiability of Fourier Gap Series and “Riemann’s Example” of a Continuous, Nondifferentiable Function. J. Approx. Theory 48, 303–321 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohr E.: Wo ist die Riemannsche Funktion nicht differenzierbar?. Annali di Matematica Pura ed Applicata 123(1), 93–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Queffelec H.: Dérivabilité de certaines sommes de séries de Fourier lacunaires. Comptes rendus de l’Académie des Sciences de Paris 273, 291–293 (1971)

    MathSciNet  MATH  Google Scholar 

  23. Shidfar A., Sabetfakhri K.: On the Continuity of van der Waerden’s Function in the Hölder Sense. Am. Math. Mon. 93, 375–376 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith A.: The Differentiability of Riemann’s Function. Proc. Am. Math. Soc. 34(2), 463–468 (1972)

    MATH  Google Scholar 

  25. Takagi, T.: A Simple Example of the Continuous Function without Derivative. In: Proceedings of the Physico-Mathematical Society of Japan, vol. 1, pp. 176–177 (1903)

  26. Torrésani, B.: Analyse continue par ondelettes, CNRS Editions, Paris (1995)

  27. Tricot, C.: Courbes et dimension fractale. Springer, Berlin (1999)

  28. Ubis, A.: Questions of Arithmetic and Harmonic Analysis, PhD-Thesis, Madrid (2006)

  29. Young, R.: An Introduction to Nonharmonic Fourier Series, Academic Press, San Diego (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Simons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastin, F., Nicolay, S. & Simons, L. About the Uniform Hölder Continuity of Generalized Riemann Function. Mediterr. J. Math. 13, 101–117 (2016). https://doi.org/10.1007/s00009-014-0501-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-014-0501-3

Mathematical Subject Classification

Keywords

Navigation