Skip to main content
Log in

A Characterization of Self-similar Symbolic Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we use fractal structures to study self-similar sets and self-similar symbolic spaces. We show that these spaces have a natural fractal structure, justifying the name of fractal structure, and we characterize self-similar symbolic spaces in terms of fractal structures.

We prove that self-similar symbolic spaces can be characterized in a similar way, in the form, to the definition of classical self-similar sets by means of iterated function systems. We also study when a self-similar symbolic space is a self-similar set. Finally, we study relations between fractal structures with “pieces” homeomorphic to the space and different concepts of self-homeomorphic spaces.

Along the paper, we propose several methods in order to construct self-similar sets and self-similar symbolic spaces from a geometrical approach. This allows to construct these kind of spaces in a very easy way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.G. Arenas, M.A. Sánchez-Granero, A characterization of non-archimedeanly quasimetrizable spaces, Rend. Istit. Mat. Univ. Trieste, Suppl. Vol. XXX (1999), 21–30.

  2. Arenas F.G., Sánchez-Granero M.A.: A new approach to metrization. Topology Appl. 123(1), 15–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. F.G. Arenas, M.A. Sánchez-Granero, A new metrization theorem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5-B (2002), 109–122.

  4. Arenas F.G., Sánchez-Granero M.A.: Hahn-Mazurkiewicz revisited: a new proof. Houston J. Math. 28(4), 753–769 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Arenas F.G., Sánchez-Granero M.A.: Completeness in metric spaces. Indian J. Pure Appl. Math. 33(8), 1197–1208 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Arenas F.G., Sánchez-Granero M.A.: Completeness in GF-spaces. Far East J. Math. Sci. (FJMS) 10(3), 331–351 (2003)

    MathSciNet  MATH  Google Scholar 

  7. F.G. Arenas, M.A. Sánchez-Granero, Dimension, inverse limits and GF-spaces, Rend. Istit. Mat. Univ. Trieste XXXV (2003), 19–35.

  8. Bandt C., Keller K.: Self-similar sets 2: a simple approach to the topological structure of fractals. Math. Nachr. 154, 27–39 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Bandt and T. Retta, Self-similar sets as inverse limits of finite topological spaces, Topology, measures, and fractals (Warnemunde, 1991), 41–46. Akademie-Verlag, Berlin, 1992.

  10. Bandt C., Retta T.: Topological spaces admitting a unique fractal structure. Fund. Math. 141, 257–268 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Bandt C., Hung N.V., Rao H.: On the open set condition for self-similar fractals. Proc. Amer. Math. Soc. 134(5), 1369–1374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bandt C., Hung N.V.: Self-similar sets with an open set condition and great variety of overlaps. Proc. Amer. Math. Soc. 136(11), 3895–3903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Charatonik W.J., Dilks A.: On self-homeomorphic spaces. Topology Appl. 55, 215–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Falconer, Fractal geometry, Mathematical Foundations and Applications, John Wiley & Sons, 1990.

  15. Feder J.: Fractals. Plenum Press, New York (1988)

    MATH  Google Scholar 

  16. P. Fletcher and W.F. Lindgren, Quasi-uniform spaces, Lecture Notes Pure Appl. Math. 77, Marcel Dekker, New York, 1982.

  17. G. Gruenhage, Generalized metric spaces, chapter 10 of K.Kunen, J.E. Vaughan (ed.), Handbook of set-theoretic topology, Elsevier Science Publishers B.V., 1984.

  18. M. Hata, Fractals-On self-similar sets. Sugaku Expositions 6-1, 1993.

  19. Hata M.: On some properties of set-dynamical systems. Proc. Japan Acad. Ser. A Math. Sci. 61, 99–102 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hata M.: On the structure of self-similar sets. Japan J. Indust. Appl. Math. 2, 381–414 (1985)

    MathSciNet  MATH  Google Scholar 

  21. M. Hata, Topological aspects of self-similar sets and singular functions, Fractal Geometry and Analysis, 255–276. Kluwer Academic Publishers, Dordrecht, 1991.

  22. B. Mandelbrot, R.L. Hudson, The (mis) behavior of markets. Basic Books, 2004.

  23. Hutchison J.E.: Fractal and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  24. Kameyama A.: Self-similar sets from the topological point of view. Japan J. Indust. Appl. Math. 10, 85–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Romaguera S., Shore S.D.: Metrizability of asymmetric spaces. Ann. New. York Acad. Sci. 806, 382–392 (1996)

    Article  MathSciNet  Google Scholar 

  26. S. Willard, General topology, Addison-Wesley, 1970.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Sánchez-Granero.

Additional information

The second author acknowledges the support of the Spanish Ministry of Science and Innovation, grant MTM2009-12872-C02-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arenas, F.G., Sánchez-Granero, M.A. A Characterization of Self-similar Symbolic Spaces. Mediterr. J. Math. 9, 709–728 (2012). https://doi.org/10.1007/s00009-011-0146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-011-0146-4

Mathematics Subject Classification (2010)

Keywords

Navigation