Skip to main content
Log in

Matrix Mechanics of the Relativistic Point Particle and String in Clifford Space

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We resolve the space-time canonical variables of the relativistic point particle into inner products of Weyl spinors with components in a Clifford algebra and find that these spinors themselves form a canonical system with generalized Poisson brackets. For N particles, the inner products of their Clifford coordinates and momenta form two N × N Hermitian matrices X and P which transform under a U(N) symmetry in the generating algebra. This is used as a starting point for defining matrix mechanics for a point particle in Clifford space. Next we consider the string. The Lorentz metric induces a metric and a scalar on the world sheet which we represent by a Jackiw–Teitelboim term in the action. The string is described by a polymomenta canonical system and we find the wave solutions to the classical equations of motion for a flat world sheet. Finally, we show that the \({SL(2.\mathbb{C})}\) charge and space-time momentum of the quantized string satisfy the Poincaré algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchsenius K.: Degenerate space-time paths and the non-locality of quantum mechanics in a Clifford substructure of space-time. Math. Phys. Electron. J. 6(4), 1–14 (2000)

    MathSciNet  Google Scholar 

  2. Borchsenius, K.: Clifford spinors and the relativistic point particle. arXiv:hep-th/0111262 (2001)

  3. Borchsenius K.: Fermi substructure of space-time. Int. J. Theor. Phys. 34, 1863–1870 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borchsenius K.: Spin substructure of space-time. General Rel. Grav. 19, 643–648 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. De Donder, T.: Theorie Invariantive du Calcul des Variations, Nuov.´ed. Gauthier-Villars, Paris (1935)

  6. Dray, T., Manogue, C.A.: Octonionic Cayley spinors and E6. arXiv:0911.2255 (2009)

  7. Infeld L., Van Der Waerden B.L.: Sitzber. Preuss. Akad. Wiss., Phys. Math. Kl. 9, 380 (1933)

    Google Scholar 

  8. Jackiw, R.: Quantum Theory Of Gravity. In: Christensen, S. (ed.) Adam Hilgar, Bristol, pp. 403–420 (1984)

  9. John, C.B.: The octonions. Bull. Am. Math. Soc. (N.S.) 39(2), 145–205 (2002) (MR)

  10. Kastrup H.A.: Canonical theories of Lagrangian dynamical systems in physics. Phys. Rep. 101(1–2), 1–167 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras. J. Math. Phys. 34, 3746–3767 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Navarro, M.: Symmetries in two-dimensional dilaton gravity with matter. Phys. Rev. D 56, 7792 (1997)

  13. Teitelboim C.: Gravitation and Hamiltonian structure in two space-time dimensions. Phys. Lett. B126, 41 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  14. Weyl H.: Geodesic fields in the calculus of variations for multiple integrals. Ann. Math. 36, 607–662 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaare Borchsenius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchsenius, K. Matrix Mechanics of the Relativistic Point Particle and String in Clifford Space. Adv. Appl. Clifford Algebras 26, 53–69 (2016). https://doi.org/10.1007/s00006-015-0557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0557-6

Keywords

Navigation