Skip to main content

Advertisement

Log in

Type I, II, and III Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Interferons (IFNs) are cytokines released by host cells in response to the presence of pathogens or tumor cells. The aim of this review was to present the previously known and new findings about the role of interferons type I and II, and recently discovered type III in Mycobacterium tuberculosis (M. tuberculosis) infection control. Infection of various cell types with M. tuberculosis induce both IFN-α and IFN-β synthesis. The majority of the studies support the findings that IFN type I actually promotes infection with M. tuberculosis. It has been well establish that IFN-γ has protective function against M. tuberculosis and the other mycobacteria and that the primary source of this cytokine are CD4+ and CD8+ T cells. Recently, it has been shown that also the innate lymphocytes, γδ T cells, natural killer (NK) T cells, and NK cells can also be the source of IFN-γ in response to mycobacterial infection. Several studies have shown that CD4+ T cells protect mice against M. tuberculosis independently of IFN-γ. The balance between IFN-γ and different cytokines such as IL-10 and other Th2 cell cytokines is likely to influence disease outcome. Type I IFN appears to be detrimental through at least three separate, but overlapping, type I IFN-mediated mechanisms: induction of excessive apoptosis, specific suppression of Th1 and IFN-γ responses, and dampening of the immune response by strong IL-10 induction. Recently it has been found that M. tuberculosis infection in A549 lung epithelial cells stimulate up-regulation of IFN-λ genes in vitro. IFN-λs also have a role in modulation of Th1/Th2 response. IFN-λs are not essential for M. tuberculosis infection control, but can give some contribution in immune response to this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad S (2011) Pathogenesis, immunology and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol 2011:814943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Akira S, Takeda K (2004) Functions of toll-like receptors: lessons from KO mice. C R Biol 327:581–589

    Article  PubMed  CAS  Google Scholar 

  • Ank N, West H, Bartholdy C et al (2006) Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80:4501–4509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Antonelli LR, Rothfuchs AG, Gonçalves R et al (2010) Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591

    Article  PubMed  CAS  Google Scholar 

  • Barnes B, Lubyova B, Pitha PM (2002) On the role of IRF in host defense. J Interferon Cytokine Res 22:59–71

    Article  PubMed  CAS  Google Scholar 

  • Behar SM, Martin CJ, Nunes-Alves C et al (2011) Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 13:749–756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berry MP, Graham CM, McNab FW et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430:257–263

    Article  PubMed  CAS  Google Scholar 

  • Bhatt K, Hickman SP, Salgame P (2004) Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol 172:2748–2751

    Article  PubMed  CAS  Google Scholar 

  • Bierne H, Travier L, Mahlakõiv T et al (2012) Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS ONE 7:e39080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bloom CI, Graham CM, Berry MP et al (2012) Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS ONE 7:e46191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bodnar KA, Serbina NV, Flynn JL (2001) Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69:800–809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bold TD, Banaei N, Wolf AJ et al (2011) Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of Mycobacterium tuberculosis in vivo. PLoS Pathog 7:e1002063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bousso P (2008) T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 8:675–684

    Article  PubMed  CAS  Google Scholar 

  • Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  PubMed  CAS  Google Scholar 

  • Chackerian A, Alt J, Perera V et al (2002) Activation of NKT cells protects mice from tuberculosis. Infect Immun 70:6302–6309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Coccia EM, Severa M, Giacomini E et al (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34:796–805

    Article  PubMed  CAS  Google Scholar 

  • Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper AM, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191–204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper AM, Pearl JE, Brooks JV et al (2000) Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun 68:6879–6882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper AM, Adams LB, Dalton DK et al (2002) IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10:221–226

    Article  PubMed  CAS  Google Scholar 

  • Cooper AM, Mayer-Barber KD, Sher A (2011) Role of innate cytokines in mycobacterial infection. Mucosal Immunol 4:252–260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidson S, Maini MK, Wack A (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 35:252–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dheda K, Schwander SK, Zhu B et al (2010) The immunology of tuberculosis: from bench to bedside. Respirology 15:433–450

    Article  PubMed  Google Scholar 

  • Diel R, Loddenkemper R, Niemann S et al (2011) Negative and positive predictive value of a whole-blood interferon-γ release assay for developing active tuberculosis: an update. Am J Respir Crit Care Med 183:88–95

    Article  PubMed  CAS  Google Scholar 

  • Divangahi M, Behar SM, Remold H (2013) Dying to live: how the death modality of the infected macrophage affects immunity to tuberculosis. Adv Exp Med Biol 783:103–120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doyle SL, Husebye H, Connolly DJ et al (2012) The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nat Commun 3:707

    Article  PubMed  CAS  Google Scholar 

  • Dumoutier L, Tounsi A, Michiels T et al (2004) Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. J Biol Chem 279:32269–32274

    Article  PubMed  CAS  Google Scholar 

  • Egen JG, Rothfuchs AG, Feng CG et al (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–819

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng CG, Kaviratne M, Rothfuchs AG et al (2006) NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 177:7086–7093

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Rowe DC, Barnes BJ et al (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flynn JL, Chan J (2005) What’s good for the host is good for the bug. Trend Microbiol 13:98–102

    Article  CAS  Google Scholar 

  • Gallagher G, Megjugorac NJ, Yu RY et al (2010) The lambda interferons: guardians of the immune-epithelial interface and the T-helper 2 response. J Interferon Cytokine Res 30:603–615

    Article  PubMed  CAS  Google Scholar 

  • Gallegos AM, van Heijst JW, Samstein M et al (2011) A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7:e1002052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Geijtenbeek TB, Van Vliet SJ, Koppel EA et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197:7–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giacomini E, Iona E, Feroni L et al (2001) Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 166:7033–7041

    Article  PubMed  CAS  Google Scholar 

  • Giacomini E, Remoli ME, Scandurra M et al (2011) Expression of proinflammatory and regulatory cytokines via NF-κB and MAPK-dependent and IFN regulatory factor-3-independent mechanisms in human primary monocytes infected by Mycobacterium tuberculosis. Clin Dev Immunol 2011:841346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M et al (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Grotzke JE, Siler AC, Lewinsohn DA et al (2010) Secreted immunodominant Mycobacterium tuberculosis antigens are processed by the cytosolic pathway. J Immunol 185:4336–4343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanekom WA, Mendillo M, Manca C et al (2003) Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 188:257–266

    Article  PubMed  CAS  Google Scholar 

  • Harari A, Rozot V, Bellutti Enders F et al (2011) Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 17:372–376

    Article  PubMed  CAS  Google Scholar 

  • Hölscher C, Reiling N, Schaible UE et al (2008) Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38:680–694

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Schindler U, Henzel WJ et al (1995) Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2:321–329

    Article  PubMed  CAS  Google Scholar 

  • Hsu T, Hingley-Wilson SM, Chen B et al (2003) The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iversen MB, Paludan SR (2010) Mechanisms of type III interferon expression. J Interferon Cytokine Res 30:573–578

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  • Jordan WJ, Eskdale J, Srinivas S et al (2007) Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response. Genes Immun 8:254–261

    Article  PubMed  CAS  Google Scholar 

  • Kamath AB, Alt J, Debbabi H et al (2004) The major histocompatibility complex haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect Immun 72:6790–6798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1:20–30

    Article  PubMed  CAS  Google Scholar 

  • Keane J, Gershon S, Wise RP et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Kleinnijenhuis J, Oosting M, Joosten LA et al (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Korbel DS, Schneider BE, Schraible UE (2008) Innate immunity in tuberculosis: myths and truth. Microbes Infect 10:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Kotenko SV (2002) The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 13:223–240

    Article  PubMed  CAS  Google Scholar 

  • Kotenko SV (2011) IFN-λs. Curr Opin Immunol 23:583–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kotenko SV, Gallagher G, Baurin VV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77

    Article  PubMed  CAS  Google Scholar 

  • Leber JH, Crimmins GT, Raghavan S et al (2008) Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog 4:e6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li M, Liu X, Zhou Y et al (2009) Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol 86:23–32

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Wu J, Wang H et al (2011) Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS ONE 6:e24290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • MacMicking JD (2012) Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol 12:367–382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maher SG, Sheikh F, Scarzello AJ et al (2008) IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther 7:1109–1115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malmgaard L (2004) Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24:439–454

    Article  PubMed  CAS  Google Scholar 

  • Manca C, Tsenova L, Bergtold A et al (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc Natl Acad Sci USA 98:5752–5757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marcello T, Grakoui A, Barba-Spaeth G et al (2006) Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–1898

    Article  PubMed  Google Scholar 

  • Mayer-Barber KD, Andrade BB, Barber DL et al (2011) Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–1034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mayer-Barber KD, Andrade BB, Oland SD (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103

    Article  PubMed  CAS  Google Scholar 

  • McNab FW, Ewbank J, Rajsbaum R et al (2013) TPL-2-ERK signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. J Immunol 191:1732–1743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McWhirter SM, Fitzgerald KA, Rosains J et al (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101:233–238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murray J, Sonnenberg P, Nelson G et al (2007) Cause of death and presence of respiratory disease at autopsy in an HIV-1 seroconversion cohort of southern African gold miners. AIDS 21(Suppl 6):S97–S104

    Article  PubMed  Google Scholar 

  • Nagarajan U (2011) Induction and function of IFNβ during viral and bacterial infection. Crit Rev Immunol 31:459–474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208:2251–2262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Novikov A, Cardone M, Thompson R et al (2011) Mycobacterium tuberculosis triggers host type I interferon signaling to regulate IL-1β production in human macrophages. J Immunol 187:2540–2547

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nunes-Alves C, Booty MG, Carpenter SM et al (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12:289–299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Onoguchi K, Yoneyama M, Takemura A et al (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282:7576–7581

    Article  PubMed  CAS  Google Scholar 

  • Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16:57–63

    Article  PubMed  CAS  Google Scholar 

  • Pandey AK, Yang Y, Jiang Z et al (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32

    Article  PubMed  CAS  Google Scholar 

  • Pietilä TE, Latvala S, Osterlund P et al (2010) Inhibition of dynamin-dependent endocytosis interferes with type III IFN expression in bacteria-infected human monocyte-derived DCs. J Leukoc Biol 88:665–674

    Article  PubMed  CAS  Google Scholar 

  • Pitt JM, Stavropoulos E, Redford PS et al (2012) Blockade of IL-10 signaling during bacillus Calmette–Guérin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-γ and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J Immunol 189:4079–4087

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prokunina-Olsson L, Muchmore B, Tang W et al (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45:164–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Remoli ME, Giacomini E, Lutfalla G et al (2002) Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J Immunol 169:366–374

    Article  PubMed  CAS  Google Scholar 

  • Renauld JC (2003) Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 3:667–676

    Article  PubMed  CAS  Google Scholar 

  • Rothfuchs AG, Bafica A, Feng CG et al (2007) Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells. J Immunol 179:3463–3471

    Article  PubMed  CAS  Google Scholar 

  • Saiga H, Shimada Y, Takeda K (2011) Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011:347594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samstein M, Schreiber HA, Leiner IM et al (2013) Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2:e01086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sauzullo I, Scrivo R, Mengoni F et al (2014) Multi-functional flow cytometry analysis of CD4+ T cells as an immune biomarker for latent tuberculosis status in patients treated with tumour necrosis factor (TNF) antagonists. Clin Exp Immunol 176:410–417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwander S, Dheda K (2011) Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. Am J Respir Crit Care Med 183:696–707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shafiani S, Tucker-Heard G, Kariyone A et al (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sheppard P, Kindsvogel W, Xu W et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68

    Article  PubMed  CAS  Google Scholar 

  • Siebler J, Wirtz S, Weigmann B et al (2007) IL-28A is a key regulator of T-cell-mediated liver injury via the T-box transcription factor T-bet. Gastroenterology 132:358–371

    Article  PubMed  CAS  Google Scholar 

  • Sommereyns C, Paul S, Staeheli P et al (2008) IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4:e1000017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sonnenberg P, Glynn JR, Fielding K et al (2005) How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191:150–158

    Article  PubMed  Google Scholar 

  • Stanley SA, Johndrow JE, Manzanillo P et al (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152

    Article  PubMed  CAS  Google Scholar 

  • Strutt TM, McKinstry KK, Dibble JP et al (2010) Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16:558–564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14:111–116

    Article  PubMed  CAS  Google Scholar 

  • Tezuka Y, Endo S, Matsui A et al (2012) Potential anti-tumor effect of IFN-λ2 (IL-28A) against human lung cancer cells. Lung Cancer 78:185–192

    Article  PubMed  Google Scholar 

  • Theofilopoulos AN, Baccala R, Beutler B et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336

    Article  PubMed  CAS  Google Scholar 

  • Tomasello E, Pollet E, Vu Manh TP et al (2014) Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types. Front Immunol 5:526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Travar M, Vucic M, Petkovic M (2014) Interferon lambda-2 levels in sputum of patients with pulmonary Mycobacterium tuberculosis infection. Scand J Immunol 80:43–49

    Article  PubMed  CAS  Google Scholar 

  • Uze G, Schreiber G, Piehler J et al (2007) The receptor of the type I interferon family. Curr Topics Microbiol Immunol 316:71–95

    CAS  Google Scholar 

  • van der Wel NN, Hava D, Houben D et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Winslow GM, Roberts AD, Blackman MA et al (2003) Persistence and turnover of antigen-specific CD4+ T cells during chronic tuberculosis infection in the mouse. J Immunol 170:2046–2052

    Article  PubMed  CAS  Google Scholar 

  • Witte K, Witte E, Sabat R et al (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21:237–251

    Article  PubMed  CAS  Google Scholar 

  • Wolf AJ, Desvignes L, Linas B et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woodworth JS, Behar SM (2006) Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit Rev Immunol 26:317–352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woodworth JS, Fortune SM, Behar SM (2008) Bacterial protein secretion is required for priming of CD8+ T cells specific for the Mycobacterium tuberculosis antigen CFP10. Infect Immun 76:4199–4205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • World Health Organization (2014) Global tuberculosis report 2014. WHO/HTM/TB/2014.08. World Health Organization, Geneva

  • Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang CT, Cambier CJ, Davis JM et al (2012) Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 12:301–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang SY, Boisson-Dupuis S, Chapgier A et al (2008) Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev 226:29–40

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Hamming OJ, Ank N et al (2007) Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol 81:7749–7758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu H, Butera M, Nelson DR et al (2005) Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication. Virol J 2:80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zuñiga J, Torres-García D, Santos-Mendoza T et al (2012) Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol 2012:193923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Travar.

Ethics declarations

Conflict of interest

None to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travar, M., Petkovic, M. & Verhaz, A. Type I, II, and III Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection. Arch. Immunol. Ther. Exp. 64, 19–31 (2016). https://doi.org/10.1007/s00005-015-0365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-015-0365-7

Keywords

Navigation