Skip to main content
Log in

Experimental models of colorectal cancer

  • Current Status
  • Published:
Diseases of the Colon & Rectum

Abstract

PURPOSE: A review ofin vivo andin vitro models of colorectal cancer is presented. METHODS: A retrospective literature review was performed with reference to CD-ROM Medline and Index Medicus. RESULTS: A comparison of the advantages and disadvantages of the models is presented in addition to a summary of individual model methodology and applications. CONCLUSIONS: Such models are a useful adjunct for surgical research in colorectal oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz E, Stewart HL. Intestinal carcinoma and other lesions in mice following oral administration of 1,2,5,6-dibenzathracene and 2-0-methylcholanthrene. J Natl Cancer Inst 1941;1:17–40.

    Google Scholar 

  2. Walpole AL, Williams M, Roberts DC. The carcinogenic action of the carcinogenic action of 4-aminodiphenyl and 3:2-dimethyl-4-aminodiphenyl. Br J Ind Med 1952;9:255–63.

    Google Scholar 

  3. Cleveland JC, Litvak SF, Cole JW. Identification of the route of action of the carcinogen 3:2-dimethyl-4-amino-diphenyl in the induction of intestinal neoplasia. Cancer Res 1967;27:708–14.

    Google Scholar 

  4. Navarrete A, Spjut H. Effect of colostomy on experimentally produced neoplasms of the colon of the rat. Lancet 1967;2:1466–72.

    Google Scholar 

  5. Laqueur GL. The induction of intestinal neoplasms in rats with the glycoside cycasin and its aglycone. Virchows Arch Pathol Anat Histopathol 1965;340:151–63.

    Google Scholar 

  6. Druckrey H, Lange A. Carcinogenicity of azoxymethane dependent on age in BD rats. Fed Proc 1972;31:1482–4.

    Google Scholar 

  7. Ryser HJ. Chemical carcinogenesis. N Engl J Med 1971;285:721–34.

    Google Scholar 

  8. Wiebecke B, Krey U, Loehrs U, Eder M. Morphological and autoradiographical investigations on experimental carcinogenesis and polyp development in the intestinal tract of rats and mice. Virchows Arch A Pathol Anat Histopathol 1973;360:179–93.

    Google Scholar 

  9. Balish E, Shih CN, Croft WA,et al. Effect of age, sex and intestinal flora on the induction of colon tumours in rats. J Natl Cancer Inst 1977;58:1103–6.

    Google Scholar 

  10. Evans JT, Shows TB, Sproul EE, Paolini NS, Mittelman A, Hauschka TS. Genetics of colon carcinogenesis in mice treated with 1,2-dimethylhydrazine. Cancer Res 1977;37:134–6.

    Google Scholar 

  11. Moon RC, Fricks CM, Schiff LJ. Effect of age and sex on colon carcinogenesis. Proc Am Assoc Cancer Res 1976;17:23–8.

    Google Scholar 

  12. Ward JM, Yamamoto RS, Brown CA. Pathology of intestinal neoplasms and other lesions in rats exposed to azoxymethane. J Natl Cancer Inst 1973;51:1029–39.

    Google Scholar 

  13. Fiala ES. Investigations into the metabolism and mode of action of the colon carcinogen 1,2-dimethylhydrazine. Cancer 1975;36:2407–12.

    Google Scholar 

  14. Grab DJ, Zedek MS. Organ specific effects of the carcinogen methylazoxymethanol related to metabolism by NAD-dependent dehydrogenases. Cancer Res 1977;37:4182–7.

    Google Scholar 

  15. Thurnherr N, Deschner EE, Stonehill EH, Lipkin M. Induction of adenocarcinomas of the colon in mice by weekly injections of 1,2-dimethylhydrazine. Cancer Res 1973;33:940–5.

    Google Scholar 

  16. Ward JM. Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats. Lab Invest 1974;30:505–13.

    Google Scholar 

  17. Winneker RC, Tompkins M, Westenberger P, Harris J. Morphological studies of chemically induced colon tumours in hamsters. Exp Mol Pathol 1977;27:19–34.

    Google Scholar 

  18. Pozharisski KM, Kapustin YM, Likachev AJ, Shaposhnikov JD. The mechanism of carcinogenic action of 1,2-dimethylhydrazine in rats. Int J Cancer 1975;15:673–83.

    Google Scholar 

  19. Fiala ES, Bobotas G, Kulakis C, Wattenberg LW, Weisburger JH. Effect of disulfiram and related compounds of the metabolismin vivo of the colon carcinogen 1,2-dimethylhydrazine. Biochem Pharmacol 1977;26:1763–8.

    Google Scholar 

  20. Weisburger JH. Colon carcinogens: their metabolism and mode of action. Cancer 1971;28:60–70.

    Google Scholar 

  21. Zedek MS, Grab DJ, Sternberg SS. Differences in the acute response of the various segments of the rat intestine to treatment with the intestinal carcinogen methylazoxymethanol acetate. Cancer Res 1977;37:32–6.

    Google Scholar 

  22. Sugimura T, Fujimura S, Baba T. Tumour production in the glandular stomach and alimentary tract of the rat by N-methyl-N-nitro-N-nitrosoguanidine. Cancer Res 1970;30:455–65.

    Google Scholar 

  23. Narisawa T, Sato T, Hayakawa M, Sakuma A, Nakano H. Carcinoma of the colon and rectum of rats by rectal infusion of N-methyl-N-nitro-N-nitrosoguanidine. Gann 1971;62:231–4.

    Google Scholar 

  24. Newberne PM, Rogers A. Rat colon carcinomas associated with aflatoxin and marginal vitamin A. J Natl Cancer Inst 1973;50:439–48.

    Google Scholar 

  25. Deger GE. Aflatoxin—human colon carcinogenesis [letter]? Ann Intern Med 1976;85:204.

    Google Scholar 

  26. Lamont JT, O'Gorman TA. Experimental colon cancer. Gastroenterology 1978;75:1157–69.

    Google Scholar 

  27. Lingeman CH, Garner FM. Comparative study of intestinal adenocarcinomas of animals and man. J Natl Cancer Inst 1972;48:325–46.

    Google Scholar 

  28. Madarnas P, Dube M, Rola-Pleszczynski M, Nigam VN. An animal model of Kaposi's sarcoma. II. Pathogenesis of dimethylhydrazine induced angiosarcoma and colorectal cancer in three mouse strains. Anticancer Res 1992;12:113–7.

    Google Scholar 

  29. Hawks A, Swann PF, Magee PN. Probable methylation of nucleic acids of mouse colon by 1,2-dimethylhydrazinein vivo. Biochem Pharmacol 1971;21:432–5.

    Google Scholar 

  30. Hawks A, Magee PN. The alkylation of nucleic acids of rat and mousein vivo by the carcinogen 1,2-dimethylhydrazine. Br J Cancer 1974;30:440–6.

    Google Scholar 

  31. Rogers KJ, Pegg AE. Formation of O6-methylguanine by alkylation of rat liver, colon and kidney DNA following administration of 1,2-dimethylhydrazine. Cancer Res 1977;37:4082–7.

    Google Scholar 

  32. Kanagalingam K, Balis EM.In vivo repair of rat intestinal DNA damage by alkylating agents. Cancer 1975;36:2364–72.

    Google Scholar 

  33. Gennaro AR, Villanueva R, Sukonthaman Y, Vathanophas V, Rosemond GP. Chemical carcinogenesis in transposed intestinal segments. Cancer Res 1973;33:536–41.

    Google Scholar 

  34. Chan PC, Cohen LA, Narisawa T, Weisburger JH. Early effects of a single intrarectal dose of 1,2-dimethylhydrazine in mice. Cancer Res 1976;36:13–7.

    Google Scholar 

  35. Maskens AP. Histogenesis and growth pattern of 1,2-dimethylhydrazine induced rat colon adenocarcinoma. Cancer Res 1976;36:1585–92.

    Google Scholar 

  36. Tutton PJ, Barkla DH. Cell proliferation in the descending colon of dimethylhydrazine treated rats and in dimethylhydrazine induced adenocarcinomata. Virchows Arch B Cell Pathol 1976;21:147–60.

    Google Scholar 

  37. Tutton PJ, Barkla DH. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition. Virchows Arch B Cell Pathol 1976;21:161–8.

    Google Scholar 

  38. Tutton PJ, Barkla DH. The influence of adrenoceptor activity on cell proliferation in colonic crypt epithelium and in colonic adenocarcinoma. Virchows Arch Zell Pathol 1977;24:139–64.

    Google Scholar 

  39. Wattenberg LW. Inhibition of dimethylhydrazine induced neoplasia of the large intestine by disulfiram. J Natl Cancer Inst 1975;54:1005–6.

    Google Scholar 

  40. Jacobs MM, Burger J, Griffin AC. Inhibitory effects of selenium on 1,2-dimethylhydrazine and methylazoxymethanol acetate induction of colon tumors. Cancer Lett 1977;2:133–8.

    Google Scholar 

  41. Tutton PJ, Barkla DH. Cytotoxicity of 5,6-dihydroxytryptamine in dimethylhydrazine-induced carcinomas of rat colon. Cancer Res 1977;37:1241–4.

    Google Scholar 

  42. Filipe MI. Mucous secretion in rat colonic mucosa during carcinogenesis induced by dimethylhydrazine: a morphological and histochemical study. Br J Cancer 1975;32:60–77.

    Google Scholar 

  43. Filipe MI, Cooke KB. Changes in the composition of mucin in the mucosa adjacent to carcinoma of the colon as compared with the normal. J Clin Pathol 1974;27:315–22.

    Google Scholar 

  44. Filipe MI, Branfoot AC. Abnormal patterns of mucus secretion in apparently normal mucosa of large intestine with carcinoma. Cancer 1974;34:282–9.

    Google Scholar 

  45. Barkla DH, Tutton PH. Surface changes in the descending colon of rats treated with dimethylhydrazine. Cancer Res 1977;37:262–71.

    Google Scholar 

  46. Toth B, Malick L. Production of intestinal and other tumours by 1,2-dimethylhydrazine dihydrochloride in mice. II. Scanning electron microscopic and cytochemical study of colonic neoplasms. Br J Exp Pathol 1976;57:696–705.

    Google Scholar 

  47. Homburger F, Hsueh SS, Kerr CS, Russfield AB. Inherited susceptibility of inbred strains of syrian hamsters to induction of subcutaneous sarcomas and mammary and gastrointestinal carcinomas by subcutaneous and gastric administration of polynuclear hydrocarbons. Cancer Res 1972;32:360–6.

    Google Scholar 

  48. Young GP, McIntyre A, Albert V, Folino M, Muir JG, Gibson PR. Wheat bran suppresses potato starch potentiated colorectal tumorigenesis at the aberrant crypt stage in a rat model. Gastroenterology 1996;110:508–14.

    Google Scholar 

  49. McIntosh GH. Colon cancer: dietary modifications required for a balanced protective diet. Prev Med 1993;22:767–74.

    Google Scholar 

  50. Morson BD. Evolution of cancer of the colon and rectum. Cancer 1974;343:845–60.

    Google Scholar 

  51. Yamamoto JM, Yamamoto RS, Benjamin T, Brown CA, Weisburger JH. Experimentally induced cancer of the colon in rats and mice. J Am Vet Med Assoc 1974;164:729–32.

    Google Scholar 

  52. Haase P, Cowen DM, Knowles JC, Cooper EH. Evaluation of dimethylhydrazine induced tumours in mice as a model system for colorectal cancer. Br J Cancer 1973;28:530–43.

    Google Scholar 

  53. LaMont JT, Weiser MM, Isselbacher KJ. Cell surface glycosyltransferase activity in normal and neoplastic intestinal epithelium of the rat. Cancer Res 1974;34:3225–8.

    Google Scholar 

  54. Cook JW, Kennaway EL, Kennaway NM. Production of tumors in mice by deoxycholic acid [letter]. Nature 1940;145:627.

    Google Scholar 

  55. Lacassagne A, Buu-Hoi NP, Zaidela F. Carcinogenic activity of apocholic acid. Nature 1961;190:1007–8.

    Google Scholar 

  56. Narisawa T, Magadia NE, Weisburger JH, Wynder EL. Promoting effect of bile acids on colon carcinogenesis after intrarectal installation of N-methyl-N'-nitro-N-nitrosaguanidine in rats. J Natl Cancer Inst 1974;53:1093–7.

    Google Scholar 

  57. Reddy BS, Narasawa T, Weisburger JH, Wynder EL. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germ-free rats. J Natl Cancer Inst 1976;56:441–2.

    Google Scholar 

  58. Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 1977;37:3238–42.

    Google Scholar 

  59. Chomchai C, Bhadrachari N, Nigro ND. The effect of bile on the induction of experimental intestinal tumors in rats. Dis Colon Rectum 1974;17:310–2.

    Google Scholar 

  60. Nigro ND, Bhadrachari N, Chomchai C. A rat model for studying colon cancer. Effect of cholestyramine on induced tumors. Dis Colon Rectum 1973;16:438–43.

    Google Scholar 

  61. Reddy BS, Narisawa T, Weisburger JH. Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcutaneous azoxymethane. Cancer Res 1975;36:2874–6.

    Google Scholar 

  62. Asano T, Pollard M, Madsen DC. Effects of cholestyramine on 1,2-dimethylhydrazine-induced enteric carcinoma in germ-free rats. Proc Soc Exp Biol Med 1975;150:780–5.

    Google Scholar 

  63. Imray CH, Minoura T, Davis A,et al. Comparability of hamster with human faecal unconjugated bile acids in a model of colorectal cancer. Anticancer Res 1992;12:553–8.

    Google Scholar 

  64. Pozharisski KM. The significance of nonspecific injury for colon carcinogenesis in rats. Cancer Res 1975;35:3824–30.

    Google Scholar 

  65. Ward JM, Yamamoto RS, Weisburger JH. Cellulose dietary bulk and azoxymethane-induced intestinal cancer. J Natl Cancer Inst 1973;5:713–5.

    Google Scholar 

  66. Cleveland JC, Cole JW. Relationship of experimentally induced intestinal tumors to laxative ingestion. Cancer 1969;23:1200–3.

    Google Scholar 

  67. Kim YS, Isaacs R, Perdomo J. Alterations of membrane glycopeptides in human colonic adenocarcinoma. Proc Natl Acad Sci U S A 1974;71:4869–73.

    Google Scholar 

  68. LaMont JT, Isselbacher KJ. Alterations in glycosyltransferase in human colon cancer. J Natl Cancer Inst 1975;54:53–6.

    Google Scholar 

  69. Garmaise AB, Rogers AE, Sarvaris CA, Zamcheck N, Newberne PM. Immunologic aspects of 1,2-dimethylhydrazine-induced colon tumors in rats. J Natl Cancer Inst 1975;54:1231–5.

    Google Scholar 

  70. Martin F, Martin MS, Bordes M, Knobel S. Antigens associated with chemically induced intestinal carcinomas of rats. Int J Cancer 1975;15:144–51.

    Google Scholar 

  71. Steele G, Sjoegren HO. Cross-reacting tumor-associated antigen(s) among chemically induced rat colon carcinomas. Cancer Res 1974;34:1801–7.

    Google Scholar 

  72. Steele G, Sjoegren HO. Embryonic antigens associated with chemically induced colon carcinomas in rats. Int J Cancer 1974;14:435–44.

    Google Scholar 

  73. Byrne PJ, Stephens RB, Hennessy TP, West AB, Sheahan DG. Colon cancer at sites of anastomosis [letter]. Lancet 1984;1:225.

    Google Scholar 

  74. Byrne PJ, Stephens RB, West B, O'Regan M, Hennessy TP. Handling of the bowel during surgery promotes tumour formation in an experimental model [abstract]. Br J Surg 1988;75:612.

    Google Scholar 

  75. Kanazawa K, Yamamoto T, Sato S. Experimental induction of colonic carcinomas in rats. Jpn J Exp Med 1975;45:439–56.

    Google Scholar 

  76. O'Donnell AF, O'Connell PR, Royston D, Johnston DH, Barnard R, Bouchier-Hayes D. Suture technique affects perianastomotic colonic crypt cell production and tumour formation. Br J Surg 1991;78:671–4.

    Google Scholar 

  77. Phillips RK, Cook HT. Effect of steel wire sutures on the incidence of chemically induced rodent colonic tumours. Br J Surg 1986;73:671–4.

    Google Scholar 

  78. O'Dwyer PJ, Martin EW. Viable intraluminal tumour cells and local/regional tumour growth in experimental colon cancer. Ann R Coll Surg Engl 1989;71:54–6.

    Google Scholar 

  79. McGregor JR, Galloway DJ, Jarrett F, George WD. Anastomotic materials and colorectal carcinogenesis [abstract]. Br J Surg 1988;75:603.

    Google Scholar 

  80. Calderisi RN, Freeman HJ. Differential effects of surgical suture materials in 1,2-dimethylhydrazine induced rat intestinal neoplasia. Cancer Res 1984;44:2827–30.

    Google Scholar 

  81. McGregor JR, Galloway DJ, McCulloch P, George WD. Anastomotic suture materials and implantation metastases: an experimental study. Br J Surg 1989;76:331–4.

    Google Scholar 

  82. O'Dwyer P, Ravikumar TS, Steele G Jr. Serum dependent variability in the adherence of tumour cells to surgical sutures. Br J Surg 1985;72:466–9.

    Google Scholar 

  83. Roe R, Fermor B, Williamson RC. Proliferative instability and experimental carcinogenesis at colonic anastomoses. Gut 1987;28:808–15.

    Google Scholar 

  84. Williamson RC, Davies PW, Bristol JB, Wells M. Intestinal adaptation and experimental carcinogenesis after partial colectomy. Gut 1982;23:316–25.

    Google Scholar 

  85. Rainey JB, Davies PW, Williamson RC. Relative effects of ileal resection and bypass on intestinal adaptation and carcinogenesis. Br J Surg 1984;71:197–202.

    Google Scholar 

  86. Rainey JB, Maeda M, Williams C, Williamson RC. The cocarcinogenic effect of intrathecal deoxycholate is reduced by oral metronidazole. Br J Cancer 1984;49:631–6.

    Google Scholar 

  87. Harte PJ, Steele G, Rayner AA, Munroe AE, King VP, Wilson RE. Effects of major small bowel resection on dimethyl hydrazine induced bowel carcinogenesis. J Surg Oncol 1981;18:87–93.

    Google Scholar 

  88. Filipe MI, Scurr JH, Ellis H. Effects of fecal stream on experimental colorectal carcinogenesis. Cancer 1982;50:2859–66.

    Google Scholar 

  89. Williamson RC, Rainey JB. The relationship between intestinal hyperplasia and carcinogenesis. Scand J Gastroenterol 1984;19:57–76.

    Google Scholar 

  90. Appleton GV, Davies PW, Bristol JB, Williamson RC. Inhibition of intestinal carcinogenesis by dietary supplementation with calcium. Br J Surg 1987;74:523–5.

    Google Scholar 

  91. Ross AH, Smith MA, Anderson JR, Small WP. Late mortality after surgery for peptic ulcer. N Engl J Med 1982;307:519–22.

    Google Scholar 

  92. Houghton PW, Owen RJ, Henly PJ, Mortensen NJ, Hill MJ, Williamson RC. Experimental colonic carcinogenesis after gastric surgery. Br J Surg 1990;77:774–8.

    Google Scholar 

  93. Vannucci L, Huggins CB, Mosca F. A new experimental model for colorectal carcinogenesis in the rat. J Environ Pathol Toxicol Oncol 1994;13:59–61.

    Google Scholar 

  94. Bristol JB, Wells M, Williamson RC. Adaptation to jejunoileal bypass promotes experimental colorectal carcinogenesis. Br J Surg 1984;71:123–6.

    Google Scholar 

  95. Winsett OE, Townsend CM, Glass EJ, Thompson JC. Gastrin stimulates growth of colon cancer. Surgery 1986;99:302–7.

    Google Scholar 

  96. Oscarson JE, Veen VF, Ross JS, Malt RA. Dimethylhydrazine induced colonic neoplasia: dissociation from endogenous gastrin levels. Surgery 1982;91:525–30.

    Google Scholar 

  97. Steele G Jr, Sjogren HO, Rosengren JE, Lindstrom C, Larsson A, Leandoer L. Sequential studies of serum blocking activity in rats bearing chemically induced primary bowel tumors. J Natl Cancer Inst 1975;54:959–67.

    Google Scholar 

  98. Mayhew EG, Goldrosen MH, Vaage J, Rustum YM. Effects of liposome entrapped doxorubicin on liver metastases of mouse colon carcinomas 26 and 38. J Natl Cancer Inst 1987;78:707–13.

    Google Scholar 

  99. Weese JL, Emoto SE, Sondel PM. Reduced incidence of hepatic metastases by perioperative treatment with recombinant human interleukin-2. Dis Colon Rectum 1987;30:503–7.

    Google Scholar 

  100. Lafreniere R, Rosenberg SA. A novel approach to the generation and identification of experimental hepatic metastases in a murine model. J Natl Cancer Inst 1986;76:309–22.

    Google Scholar 

  101. Dawiskiba J, Jeppson B, Persson G, Hagerstrand I, Bengmark S. A model of colonic carcinoma with liver metastases in the rat. J Exp Clin Cancer Res 1983;3:269–72.

    Google Scholar 

  102. Nordlinger B, Panis Y, Puts JP, Herve JP, Delelo R, Ballet F. Experimental model of colon cancer: recurrences after surgery alone or associated with intraperitoneal 5-Fluorouracil chemotherapy. Dis Colon Rectum 1991;34:658–63.

    Google Scholar 

  103. Liu DL, Radnall M, Svanberg K, Sefert J. Immunotherapy in liver tumours. III. A new experimental model of metastatic liver tumours from colorectal carcinoma for cytokine therapy. Cancer Lett 1995;88:211–9.

    Google Scholar 

  104. Watson SA, Morris TM, Crosbee DM, Hardcastle JD. A hepatic invasive human colorectal xenograft model. Eur J Cancer 1993;29A:1740–5.

    Google Scholar 

  105. Berwald Y, Sachs L.In vitro cell transformation with chemical carcinogens. Nature 1963;200:1182–4.

    Google Scholar 

  106. Hendrickse CW, Jones CE, Donovan IA, Neoptolemos JP, Baker PR. Oestrogen and progesterone receptors in colorectal cancer and human colonic cancer cell lines. Br J Surg 1993;80:636–40.

    Google Scholar 

  107. Shawler DL, Dorigo O, Gjerset RA, Royston I, Sobol RE, Fakhrai H. Comparison of gene therapy with interleukin-2 gene modified fibroblasts and tumor cells in the murine CT-26 model of colorectal carcinoma. J Immunother 1995;17:201–8.

    Google Scholar 

  108. Purkiss SF, Grahn MF, Turkish M, Macey MG, Williams NS.In vitro modulation of haematoporphyrin derivative photodynamic therapy on colorectal carcinoma multicellular spheroids by verapamil. Br J Surg 1992;79:120–5.

    Google Scholar 

  109. Grahn MF, Turkish M, Rowland AC, Allardice JT, Durdey P, Williams NS. Multicellular tumour spheroids as anin vitro model for photodynamic therapy using haematoporphyrin derivative. Med Sci Res 1988;16:181–3.

    Google Scholar 

  110. Mooney EF, Dye JF, Guillou PJ, Monson JR. Multidrug resistant colonic cancer cell line LoVoDx is efficiently killed by lymphokine activated killer cells from patients with carcinoma of the colon. Br J Surg 1993;80:1259–61.

    Google Scholar 

  111. Sutherland RM. Cell and environmental interactions in tumour microregions: the multicell spheroid model. Science 1988;240:177–84.

    Google Scholar 

  112. King TR, Dove WF, Herrmann B, Moser AR, Shedlovsky A. Mapping to a molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants. Proc Natl Acad Sci U S A 1989;86:222–6.

    Google Scholar 

  113. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990;247:322–4.

    Google Scholar 

  114. Luongo C, Gould KA, Su LK,et al. Mapping of multiple intestinal neoplasia (Min) to proximal chromosome 18 of the mouse. Genomics 1993;15:3–8.

    Google Scholar 

  115. Riggins GJ, Markowits S, Wilson JK, Vogelstein B, Kinzler KW. Absence of secretory phospholipase A2 gene alterations in human colorectal cancer. Cancer Res 1995;55:5184–6.

    Google Scholar 

  116. Morin PJ, Vogelstein, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A 1996;93:7950–4.

    Google Scholar 

  117. Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN. ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci U S A 1993;90:8977–81.

    Google Scholar 

  118. Dietrich WF, Lander ES, Smith JS,et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 1993;75:631–9.

    Google Scholar 

  119. Kim SH, Roth KA, Moser AR, Gordon JI. Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia. J Cell Biol 1993;123:877–93.

    Google Scholar 

  120. Shoemaker AR, Moser AR, Dove WF. N-ethyl-N-nitrosourea treatment of multiple intestinal neoplasia (Min) mice: age-related effects on the formation of intestinal adenomas, cystic crypts, and epidermoid cysts. Cancer Res 1995;55:4479–85.

    Google Scholar 

  121. Moser AR, Dove WF, Roth KA, Gordon JI. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol 1992;116:1517–26.

    Google Scholar 

  122. Moser AR, Luongo C, Gould KA, McNeley MK, Shoemaker AR, Dove WF. ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 1995;31A:1061–4.

    Google Scholar 

  123. Luongo C, Moser AR, Gledhill S, Dove WF. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res 1994;54:5947–52.

    Google Scholar 

  124. Levy DB, Smith KJ, Beazer-Barclay Y, Hamilton SR, Vogelstein B, Kinzler KW. Inactivation of both APC alleles in human and mouse tumors. Cancer Res 1994;54:5953–8.

    Google Scholar 

  125. Moser AR, Shoemaker AR, Connelly CS,et al. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev Dyn 1995;203:422–33.

    Google Scholar 

  126. Dove WF, Gould KA, Luongo C, Shoemaker AR. Emergent issues in the genetics of intestinal neoplasia. Cancer Surv 1995;25:335–55.

    Google Scholar 

  127. Jacoby RF, Marshall DJ, Newton MA,et al. Chemoprevention of spontaneous intestinal adenomas in the Apc Min mouse model by the nonsteroidal antiinflammatory drug piroxicam. Cancer Res 1996;56:710–4.

    Google Scholar 

  128. Beazer-Barclay Y, Levy DB, Moser AR,et al. Sulindac suppresses tumorigenesis in the Min mouse. Carcinogenesis 1996;17:1757–60.

    Google Scholar 

  129. Su LK, Kinzler KW, Vogelstein B,et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992;256:668–70.

    Google Scholar 

  130. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci U S A 1995;92:4482–6.

    Google Scholar 

  131. Oshima M, Oshima H, Kobayashi M, Tsutsumi M, Taketo MM. Evidence against dominant negative mechanisms of intestinal polyp formation by Apc gene mutations. Cancer Res 1995;55:2719–22.

    Google Scholar 

  132. Oshima M, Oshima H, Tsutsumi M,et al. Effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine on intestinal polyp development in Apc delta 716 knockout mice. Mol Carcinog 1996;15:11–7.

    Google Scholar 

  133. Oshima M, Takahashi M, Oshima H,et al. Effects of docosahexaenoic acid (DHA) on intestinal polyp development in Apc delta 716 knockout mice. Carcinog 1995;16:2605–7.

    Google Scholar 

  134. Oshima M, Dinchuk JE, Kargman SL,et al. Suppression of intestinal polyposis in Apc delta 716 knockout mice by inhibition of cycloxygenase 2 (COX-2). Cell 1996;87:803–9.

    Google Scholar 

  135. Fodde R, Edelmann W, Yang K,et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci U S A 1994;91:8969–73.

    Google Scholar 

  136. Smits R, Kartheuser A, Jagmohan-Changur S,et al. Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinog 1997;18:321–7.

    Google Scholar 

  137. Midgley CA, White S, Howitt R,et al. APC expression in normal human tissues. J Pathol 1997;181:426–33.

    Google Scholar 

  138. Williams AC, Browne SJ, Yeudal WA,et al. Molecular events including p53 and k-ras alterations in thein vitro progression of a human colorectal adenoma cell line to an adenocarcinoma. Oncogene 1993;8:3063–72.

    Google Scholar 

  139. Bracey TS, Miller JC, Preece A, Paraskeva C. Gamma radiation induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene 1995;10:2391–6.

    Google Scholar 

  140. Hague A, Manning AM, Hanlon KA, Huschtscha LI, Hart D, Paraskeva C. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53 independent pathway: implications for the possible role of dietary fibre in the prevention of large bowel cancer. Int J Cancer 1993;55:498–505.

    Google Scholar 

  141. Hague A, Elder DJ, Hicks DJ, Paraskeva C. Apotosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 1995;60:400–6.

    Google Scholar 

  142. Hague A, Moorghen M, Hicks D, Chapman M, Paraskeva C. BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene 1994;9:3367–70.

    Google Scholar 

  143. Mackinnon WB, Huschtscha L, Dent K, Hancock R, Paraskeva C, Mountford CE. Correlation of cellular differentiation in human colorectal carcinoma and adenoma cell lines with metabolite profiles determined by magnetic resonance spectroscopy. Int J Cancer 1994;59:248–61.

    Google Scholar 

  144. Singh S, Paraskeva C, Gallimore PH, Sheppard MC, Langman MJ. Differential growth response to oestrogen of premalignant and malignant colonic cell lines. Anticancer Res 1994;14:1037–41.

    Google Scholar 

  145. Williams AC, Browne SJ, Maning AM, Daffada P, Collard TJ, Paraskeva C. Transfection and expression of mutant p53 protein does not alter thein vivo orin vitro growth characteristics of the AA/C1 human adenoma derived cell line, including sensitivity to transforming growth factor -beta 1. Oncogene 1994;9:1479–85.

    Google Scholar 

  146. Williams AC, Hague A, Elder DJ, Paraskeva C.In vitro models for studying colorectal carcinogenesis: cellular and molecular events including APC and Rb cleavage in the control of proliferation, differentiation and apoptosis. Biochem Biophys Acta 1996;1288:9–19.

    Google Scholar 

  147. Elder DJ, Hague A, Hicks DJ, Paraskeva C. Differential growth inhibition by the aspirin metabolite salicylate in human clorectal tumour cell lines: enhanced apoptosis in carcinoma andin vitro transformed adenoma relative to adenoma cell lines. Cancer Res 1996;56:2273–6.

    Google Scholar 

  148. Sheehan JK, Thornton DJ, Howard M, Carlstedt I, Corfield AP, Paraskeva C. Biosynthesis of the MUC2 mucin: evidence for a slow assembly of fully glycosylated units. Biochem J 1996;315:1055–60.

    Google Scholar 

  149. Vavasseur F, Dole K, Yang J,et al. O-glycan biosynthesis in human colorectal adenoma cells during progression to cancer. Eur J Biochem 1994;222:415–24.

    Google Scholar 

  150. Hague A, Hicks DJ, Bracey TS, Paraskeva C. Cell-cell contact and specific cytokines inhibit apoptosis of colonic epithelial cells: growth factors protect against c-myc independent apoptosis. Br J Cancer 1997;75:960–8.

    Google Scholar 

  151. Brunton VG, Ozanne BW, Paraskeva C, Frame MC. A role for epidermal growth factor receptor, c-Src and focal adhesion kinase in anin vitro model for the progression of colon cancer. Oncogene 1997;14:283–93.

    Google Scholar 

  152. Empereur S, Djelloul S, Di Gioia Y,et al. Progression of familial adenomatous polyposis (FAP) colonic cells after transfer of the src or polyoma middle T oncogenes: cooperation between src and HGF/Met in invasion. Br J Cancer 1997;75:241–50.

    Google Scholar 

  153. Browne SJ, Williams AC, Hague A, Butt AJ, Paraskeva C. Loss of APC protein expressed by human colonic epithelial cells and the appearance of a specific low molecular weight form is associated with apoptosisin vitro. Int J Cancer 1994;59:56–64.

    Google Scholar 

  154. Williams AC, Hague A, Manning AM, Van der Stappen JW, Paraskeva C.In vitro models of human colorectal cancer. Cancer Surv 1993;16:15–29.

    Google Scholar 

  155. Cowen SE, Bibby MC, Double JA. Characterisation of the vasculature within a murine adenocarcinoma growing in different sites to evaluate the potential of vascular therapies. Acta Oncol 1995;34:357–60.

    Google Scholar 

  156. Burger AM, Double JA, Konopa J, Bibby MC. Preclinical evaluation of novel imidazoacridinone derivatives with potent activity against experimental colorectal cancer. Br J Cancer 1996;74:1369–74.

    Google Scholar 

  157. Steele G, Sjoegren HO, Price MR. Tumor-associated and embryonic antigens in soluble fractions of a chemically-induced rat colon carcinoma. Int J Cancer 1975;16:33–51.

    Google Scholar 

  158. Steele G, Sjoegren HO. Cell surface antigens in a rat colon cancer model: correlation with inhibition of tumor growth. Surgery 1977;82:164–9.

    Google Scholar 

  159. Rogers AE, Gildin J. Effect of BCG on dimethylhydrazine induction of colon tumors in rats. J Natl Cancer Inst 1975;55:385–91.

    Google Scholar 

  160. Hill MJ, Aries VC. Faecal steroid composition and its relationship to cancer of the large bowel. J Pathol 1971;104:129–39.

    Google Scholar 

  161. Nigro ND, Singh DV, Campbell RL, Sook M. Effect of dietary beef fat on intestinal tumor formation by azoxymethane in rats. J Natl Cancer Inst 1975;54:439–42.

    Google Scholar 

  162. Reddy BS, Narisawa T, Vukusich D, Weisburger JH, Wynder EL. Effect of quality and quantity of dietary fat and dimethylhydrazine in colon carcinogenesis in rats. Proc Soc Exp Biol Med 1976;151:237–9.

    Google Scholar 

  163. Reddy BS, Watanabe K, Weisburger JH. Effect of high-fat diet on colon carcinogenesis in F344 rats treated with 1,2-dimethylhydrazine, methylazoxymethanol acetate, or methylnitrosourea. Cancer Res 1977;37:4156–9.

    Google Scholar 

  164. Reddy BS, Weisburger JH, Wynder EL. Effects of dietary fat level and dimethylhydrazine on fecal acid and neutral sterol excretion and colon carcinogenesis in rats. J Natl Cancer Inst 1974;52:507–11.

    Google Scholar 

  165. Reddy BS, Mangat S, Weisburger JH, Wynder EL. Effect of high risk diets for colon carcinogenesis on intestinal mucosal and bacterial b-glucuronidase activity in F344 rats. Cancer Res 1977;37:3533–6.

    Google Scholar 

  166. Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res 1975;35:287–90.

    Google Scholar 

  167. Cohen BI, Raicht RF, Deschner EE, Takahashi M, Sarwal AN, Fazzi E. Effect of cholic acid feeding on n-methyl-n-nitrosurea induced colon tumours and cell kinetics in rats. J Natl Cancer Inst 1980;64:573–8.

    Google Scholar 

  168. Banerjee AK. DCC expression and prognosis in colorectal cancer [editorial]. Lancet 1997;349:968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mr. Banerjee is in receipt of support from the Yorkshire Cancer Research Organization.

About this article

Cite this article

Banerjee, A., Quirke, P. Experimental models of colorectal cancer. Dis Colon Rectum 41, 490–505 (1998). https://doi.org/10.1007/BF02235764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02235764

Key words

Navigation