Skip to main content
Log in

Linearization: Laplace vs. Stiefel

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The method for processing perturbed Keplerian systems known today as the linearization was already known in the XVIIIth century; Laplace seems to be the first to have codified it. We reorganize the classical material around the Theorem of the Moving Frame. Concerning Stiefel's own contribution to the question, on the one hand, we abandon the formalism of Matrix Theory to proceed exclusively in the context of quaternion algebra; on the other hand, we explain how, in the hierarchy of hypercomplex systems, both the KS-transformation and the classical projective decomposition emanate by doubling from the Levi-Civita transformation. We propose three ways of stretching out the projective factoring into four-dimensional coordinate transformations, and offer for each of them a canonical extension into the moment space. One of them is due to Ferrándiz; we prove it to be none other than the extension of Burdet's focal transformation by Liouville's technique. In the course of constructing the other two, we examine the complementarity between two classical methods for transforming Hamiltonian systems, on the one hand, Stiefel's method for raising the dimensions of a system by means of weakly canonical extensions, on the other, Liouville's technique of lowering dimensions through a Reduction induced by ignoration of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, A., Palacios, M. and Sein-Echaluce, M.: 1991, “An efficient formulation for numerical orbit computation,” inProceedings of the 3rd International Symposium on Spacecraft Flight Dynamics, ESOC Darmstadt, 65–72.

  • Bohlin, K.: 1911, “Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps,”Bull. Astron. 28, 113–119.

    Google Scholar 

  • Bond, V. R.: 1985, “A transformation of the two-body problem,”Celes. Mech. 35, 1–7.

    Google Scholar 

  • Brown, E. W.: 1896,An Introductory Treatise on the Lunar Theory. Cambridge, The University Press.

    Google Scholar 

  • Brown, E. W. and Shook, C. A.: 1933,Planetary Theory. Cambridge, The University Press.

    Google Scholar 

  • Burdet, C. A.: 1967, “Regularization of the two-body problem,”Z. angew. Math. Phys. 18, 434–438.

    Google Scholar 

  • Burdet, C. A.: 1968, “Theory of Kepler motion: The general perturbed two-body problem,”Z. angew. Math. Phys. 19, 345–368.

    Google Scholar 

  • Burdet, C. A.: 1969, “Le mouvement képlérien et les oscillateurs harmoniques,”J. Reine Angew. Math. 238, 71–84.

    Google Scholar 

  • Darboux, G.: 1915,Leçons sur la théorie générale des surfaces, Tome I. Paris, Gauthier-Villars.

    Google Scholar 

  • Deprit, A. and Williams, C. A.: 1991, “The Lissajous transformation. IV. Delaunay and Lissajous variables,”Celes. Mech. 51, 271–280.

    Google Scholar 

  • Dieudonné, J.: 1955,La géométrie des groupes classiques. Springer-Verlag, Berlin - Göttingen - Heidelberg.

    Google Scholar 

  • Dickson, L. E.: 1918, “On quaternions and their generalization and the history of the eight square problem,”Ann. Math. 20, 155–171.

    Google Scholar 

  • Ferrándiz, J. M.: 1986, “Una transformación canónica general que aumenta el número de variables. Aplicación a problemas de dos cuerpos,”Homenaje al profesor D. Rafael Cid, Ed. Vicente Camarena Badia. Universidad de Zaragoza, Secretariado de Publicaciones.

  • Ferrándiz, J. M.: 1986, “A new set of canonical variables for orbit calculations,” Second International Symposium on Spacecraft Flight Dynamics, European Space AgencySP-255, 361–364.

    Google Scholar 

  • Ferrándiz, J. M.: 1987, “Extended Canonical Transformations increasing the Number of Variables,” inLong-Term Dynamical Behaviour of Natural and Artificial N-Body Systems, ed. A. E. Roy, Kluwer Academic Publishers, Dordrecht, 103–110.

    Google Scholar 

  • Ferrándiz, J. M.: 1988, “A general canonical transformation increasing the number of variables with application to the two-body problem,”Celes. Mech. 41, 343–357.

    Google Scholar 

  • Fock, V.: 1935, “Wasserstoffatom und nicht-Euklidische Geometrie,”Izvest. Akad. Nauk SSSR, Otdel. Techn. Nauk 2, 169–188.

    Google Scholar 

  • Fock, V.: 1936, “Zur Theorie des Wasserstoffatoms,”Zeits. Phys. 98, 145–154.

    Google Scholar 

  • Giacaglia, G. E. O,: 1970, “The Levi-Civita problem and the Kustaanheimo-Stiefel transformation,” Applied Mechanics Research Laboratory, The University of Texas at Austin, TR1018, 23 pp..

  • Hurwitz, A.: 1923, “Über die Komposition der quadratischen Formen,”Math. Ann. 88, 1–25.

    Google Scholar 

  • Iwai, T.: 1985, ‘On reduction of two degrees of freedom Hamiltonian systems by anS 1 action, and 'SO0(1,2) as a dynamical group,”J. Math. Phys. 26, 885–892.

    Google Scholar 

  • Jezewski, D. J.: 1983, “A noncanonical analytic solution to theJ 2 perturbed two-body problem,”Celes. Mech. 30, 343–362.

    Google Scholar 

  • Kantor, I. L. and Solodovnikov, A. S.: 1973,Giperkompleksnye Čisla. Moscow, Nauka. Translation under the titleHypercomplex numbers. An elementary introduction to algebras. Berlin, Springer-Verlag, 1989.

    Google Scholar 

  • Kurcheeva, I. V.: 1977, “Kustaanheimo-Stiefel regularization and nonclassical canonical transformations,”Celes. Mech. 15, 353–365.

    Google Scholar 

  • Kustaanheimo, P.: 1964, “Spinor regularization of the Kepler motion,”Annales Universitatis Turkuensis Ser. A73, 7 p..

    Google Scholar 

  • Kustaanheimo, P. and Stiefel, E.: 1965, “Perturbation theory of Kepler motion based on spinor regularization,”J. Reine Angew. Math. 218, 204–219.

    Google Scholar 

  • Lambert, D. and Kibler, M.: 1988, “An algebraic and geometric approach to non-bijective quadratic transformations,”J. Phys. A: Math. Gen. 21, 307–343.

    Google Scholar 

  • Laplace, P. S.: 1799,Traité de mécanique céleste. Paris, Duprat et Bachelier. Reprinted inCEuvres. Paris, Imprimerie royale, 1843.

    Google Scholar 

  • Lidov, M. L.: 1982, “Increasing the dimensions of Hamiltonian systems, the KS-transformation, and application of particular integrals,”Kosmicheskie Issledovaniya 20, 163–176.

    Google Scholar 

  • Meyer, K. R.: 1984, “Scaling Hamiltonian systems,”Siam J. Math. Anal. 15, 877–889.

    Google Scholar 

  • Milankovich, M.: 1939, “On the applications of vectorial elements in the computation of a planetary perturbation,”Bull. Serbian Acad. Math. Nat. A, no 6.

    Google Scholar 

  • Moser, J.: 1970, “Regularization of Kepler's problem and the averaging method on a manifold,”Commun. Pure Appl. Math. 23, 609–636.

    Google Scholar 

  • Musen, P.: 1954, “Special perturbations of the vectorial elements,”A. J. 59, 262–267.

    Google Scholar 

  • Musen, P.: 1961, “On Strömgren's Method of Special Perturbations,”Journal of the Astronautical Sciences 8, 49–51.

    Google Scholar 

  • Palacios M., Abad, A., and Elipe, A.: 1991, “An efficient numerical formulation for orbit computation,” inAAS/AIAA Astrodynamics Specialist Conference, Durango, CO, U.S.A., Paper AAS 91–414, 10 p..

  • Palacios, M. and Calvo, C.: 1992, “Quaternions and numerical orbit computation,” Rev. Academia de Ciencias, Zaragoza47, 169–181.

    Google Scholar 

  • Scheifele, G.: 1968, “Verallgemeinerte kanonische Transformationen zur Abbildung von Keplerbewegungen auf harmonische Oszillatoren und zugehörige Störungstheorie,”Dissertation no 4212, Eidgenössische Technische Hochschule, Zurich.

  • Scheifele, G.: 1970, “On nonclassical canonical systems,”Celes. Mech. 2, 296–310.

    Google Scholar 

  • Stiefel, E.: 1970, “Remarks on numerical integration of Keplerian orbits,”Celes. Mech. 2, 274–281.

    Google Scholar 

  • Stiefel, E. and Scheifele, G.: 1968, “Régularisation du mouvement képlérien perturbé dans l'espace à trois dimensions par une transformation canonique généralisée,”C. R. Acad. Sc. Paris Série A267, 950–953.

    Google Scholar 

  • Stiefel, E. and Scheifele, G.: 1971,Linear and Regular Celestial Mechanics. New York Heidelberg Berlin, Springer-Verlag.

    Google Scholar 

  • Velte, W.: 1978, “Concerning the regularizing KS-transformation,”Celes. Mech. 17, 395–403.

    Google Scholar 

  • Vivarelli, M. D.: 1983, “The KS-transformation in hypercomplex form,”Celes. Mech. 29, 45–50.

    Google Scholar 

  • Vivarelli, M. D.: 1988, “Geometrical and physical outlook on the cross product of two quaternions,”Celes. Mech. 41, 359–370.

    Google Scholar 

  • Vivarelli, M. D.: 1991, “On the connection among three classical mechanical problems via the hypercomplex KS-transformation,”Celes. Mech. & Dyn. Astron. 50, 109–124.

    Google Scholar 

  • Wene, G. P.: 1984, “Algebras with anticommunting basal elements, space-time symmetries and quantum theory,”J. Math. Phys. 25, 414–416.

    Google Scholar 

  • Wintner, A.: 1947,The Analytical Foundations of Celestial Mechanics, Princeton University Press.

  • Wolfram, S.: 1991,Mathematica. A System for Doing Mathematics by Computer, Second Edition. Addison-Wesley Publishing Company, Inc.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deprit, A., Elipe, A. & Ferrer, S. Linearization: Laplace vs. Stiefel. Celestial Mech Dyn Astr 58, 151–201 (1994). https://doi.org/10.1007/BF00695790

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695790

Key words

Navigation