Skip to main content
Log in

A New Method for Genome-wide Marker Development and Genotyping Holds Great Promise for Molecular Primatology

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Over the last two decades primatologists have benefited from the use of numerous molecular markers to study various aspects of primate behavior and evolutionary history. However, most of the studies to date have been based on a single locus, usually mitochondrial DNA, or a few nuclear markers, e.g., microsatellites. Unfortunately, the use of such markers not only is unable to address successfully important questions in primate population genetics and phylogenetics (mainly because of the discordance between gene tree and species tree), but also their development is often a time-consuming and expensive task. The advent of next-generation sequencing allows researchers to generate large amounts of genomic data for nonmodel organisms. However, whole genome sequencing is still cost prohibitive for most primate species. We here introduce a second-generation sequencing technique for genotyping thousands of genome-wide markers for nonmodel organisms. Restriction site–associated DNA sequencing (RAD-seq) reduces the complexity of the genome and allows inexpensive and fast discovery of thousands of markers in many individuals. Here, we describe the principles of this technique and we demonstrate its application in five primates, Microcebus sp., Cebus sp., Theropithecus gelada, Pan troglodytes, and Homo sapiens, representing some of the major lineages within the order. Despite technical and bioinformatic challenges, RAD-seq is a promising method for multilocus phylogenetic and population genetic studies in primates, particularly in young clades in which a high number of orthologous regions are likely to be found across populations or species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson, E. C., & Garza, J. C. (2006). The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics, 172(4), 2567–2582.

    Article  PubMed  CAS  Google Scholar 

  • Avise, J. C. (1994). Molecular markers, natural history, and evolution. New York: Chapman & Hall.

    Book  Google Scholar 

  • Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS One, 3(10), e3376.

    Article  PubMed  Google Scholar 

  • Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P., & Marth, G. T. (2011). BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics, 27(12), 1691–1692.

    Article  PubMed  CAS  Google Scholar 

  • Burbano, H. A., Hodges, E., Green, R. E., Briggs, A. W., Krause, J., Meyer, M., et al. (2010). Targeted investigation of the Neanderthal genome by array-based sequence capture. Science, 328(5979), 723–725.

    Article  PubMed  CAS  Google Scholar 

  • Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and genotyping loci de novo from short-read sequences. G3, 1(3), 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., et al. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158.

    Article  PubMed  CAS  Google Scholar 

  • Davey, J. W., Cezard, T., Fuentes-Utrilla, P., Eland, C., Gharbi, K., & Blaxter, M. L. (2012). Special features of RAD sequencing data: Implications for genotyping. Molecular Ecology. doi:10.1111/mec.12084.

  • Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution, 24(6), 332–340.

    Article  PubMed  Google Scholar 

  • DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Di Fiore, A. (2003). Molecular genetic approaches to the study of primate behavior, social organization, and reproduction. Yearbook of Physical Anthropology, 46, 62–99.

    Article  Google Scholar 

  • Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? Evolution: International Journal of Organic Evolution, 63(1), 1–19.

    Article  CAS  Google Scholar 

  • Emerson, K., Merz, C., & Catchen, J. (2010). Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Sciences of the USA, 107(37), 16196–16200.

    Article  PubMed  CAS  Google Scholar 

  • Enard, W., & Pääbo, S. (2004). Comparative primate genomics. Annual Review of Genomics and Human Genetics, 5, 351–378.

    Article  PubMed  CAS  Google Scholar 

  • Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E., & Cresko, W. A. (2011). SNP discovery and genotyping for evolutionary genetics using RAD sequencing. In V. Orgogozo & M. V. Rockman (Eds.), Molecular methods for evolutionary genetics (pp. 157–178). New York: Humana Press.

    Google Scholar 

  • Goodman, M., Grossman, L. I., & Wildman, D. E. (2005). Moving primate genomics beyond the chimpanzee genome. Trends in Genetics, 21(9), 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, L., Baird, M., Hilborn, R., Seeb, L. W., & Seeb, J. E. (2011). An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Molecular Ecology Resources, 11(Supplement 1), 150–161.

    Article  PubMed  Google Scholar 

  • Hohenlohe, P. A., Amish, S. J., Catchen, J. M., Allendorf, F. W., & Luikart, G. (2011). Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Molecular Ecology Resources, 11(Supplement 1), 117–122.

    Article  PubMed  Google Scholar 

  • Hohenlohe, P. A., Bassham, S., Currey, M., & Cresko, W. A. (2012). Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1587), 395–408.

    Article  CAS  Google Scholar 

  • Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics, 6(2), e1000862.

    Article  PubMed  Google Scholar 

  • Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

    Google Scholar 

  • Jones, A. G., Small, C. M., Paczolt, K. A., & Ratterman, N. L. (2010). A practical guide to methods of parentage analysis. Molecular Ecology Resources, 10(1), 6–30.

    Article  PubMed  Google Scholar 

  • Keller, I., Wagner, C. E., Greuter, L., Mwaiko, S., Selz, O. M., Sivasundar, A., et al. (2012). Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Molecular Ecology. doi:10.1111/mec.12083.

  • Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., et al. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464(7290), 894–897.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61(5), 727–744.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

    Article  PubMed  Google Scholar 

  • Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46(3), 523.

    Article  Google Scholar 

  • Maddison, W. P., & Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology, 55(1), 21–30.

    Article  PubMed  Google Scholar 

  • Mason, V. C., Li, G., Helgen, K. M., & Murphy, W. J. (2011). Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Research, 21(10), 1695–1704.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2012). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2011.12.007.

  • Meyer, L. R., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Kuhn, R. M., Wong, M., Sloan, C. A., et al. (2013). The UCSC Genome Browser database: Extensions and updates 2013. Nucleic Acids Research, 41(D1), D46–D69.

    Article  Google Scholar 

  • Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17(2), 240–248.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau, N. J., Martin, S. H., Kozak, K. M., Salazar, C., Dasmahapatra, K. K., Davey, J. W., et al. (2012). Genome-wide patterns of divergence and gene flow across a butterfly radiation. Molecular Ecology. doi:10.1111/j.1365-294X.2012.05730.x.

  • Perelman, P., Johnson, W. E., Roos, C., Seuánez, H. N., Horvath, J. E., Moreira, M. A. M., et al. (2011). A molecular phylogeny of living primates. PLoS Genet, 7(3), e1001342.

    Article  PubMed  CAS  Google Scholar 

  • Perry, G. H., Marioni, J. C., Melsted, P., & Gilad, Y. (2010). Genomic-scale capture and sequencing of endogenous DNA from feces. Molecular Ecology, 19(24), 5332–5344.

    Article  PubMed  CAS  Google Scholar 

  • Perry, G. H., Reeves, D., Melsted, P., Ratan, A., Miller, W., Michelini, K., Louis, E. E., et al. (2012). A genome sequence resource for the aye-aye (Daubentonia madagascariensis), a nocturnal lemur from Madagascar. Genome Biology and Evolution, 4(2), 126–135.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PloS One, 7(5), e37135.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, B. E. R., Ree, R. H., & Moreau, C. S. (2012). Inferring phylogenies from RAD sequence data. PloS One, 7(4), e33394.

    Article  PubMed  CAS  Google Scholar 

  • Steiper, M. E., & Seiffert, E. R. (2012). Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proceedings of the National Academy of Sciences of the USA, 109(16), 6006–6011.

    Article  PubMed  CAS  Google Scholar 

  • Ting, N., & Sterner, K. N. (2012). Primate molecular phylogenetics in a genomic era. Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2012.08.021.

  • Wagner, C. E., Keller, I., Wittwer, S., Selz, O. M., Mwaiko, S., Greuter, L., et al. (2012). Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology. doi:10.1111/mec.12023.

  • Wilkinson, R. D., Steiper, M. E., Soligo, C., Martin, R. D., Yang, Z., & Tavaré, S. (2011). Dating primate divergences through an integrated analysis of palaeontological and molecular data. Systematic Biology, 60(1), 16–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by a Leakey Foundation General Grant and an NSF Graduate Research Fellowship. We thank the NYU Langone Medical Center’s Genome Technology Center for assistance with library preparation and sequencing, as well as two anonymous reviewers and the editors for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Bergey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergey, C.M., Pozzi, L., Disotell, T.R. et al. A New Method for Genome-wide Marker Development and Genotyping Holds Great Promise for Molecular Primatology. Int J Primatol 34, 303–314 (2013). https://doi.org/10.1007/s10764-013-9663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9663-2

Keywords

Navigation