Skip to main content
Log in

Number of information and its relation to the cosmological constant resulting from Landauer’s principle

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Using a recent published formula for the number of information N that results from Landauer’s principle we obtain an expression for the cosmological constant Λ. Next, assuming the universe as a system of mass M satisfying Landauer’s principle and eliminating its mass M from the given expression for the number of information, we obtain a new expression that agrees with the expression derived by Lloyd. Furthermore, we modify the generalized entropy relation and three equivalent entropy expressions are obtained. Finally, in two different universes the time rate of change of the entropy is calculated. In a flat universe the time rate of the entropy is time independent and depends on fundamental constants of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso Faus, A., Fullana i Alfonso, M.J.: Cosmic background Bose condensation (CBBC). Astrophys. Space Sci. (2013). doi:10.1007/s10509-013-1500-08

    Google Scholar 

  • Bennett, C.H.: Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)

    Article  MATH  Google Scholar 

  • Bennett, Larson, C.L.D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., Smith, K.M., Hill, R.S., Gold, B., Halpern, M., Komatsu, E., Nolta, M.R., Page, L., Spergel, D.N., Wollack, E., Dunkley, J., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., Wright, E.L.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results (2013). arXiv:1212.5225v2 [astro-ph.CO]

  • Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., et al.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  ADS  Google Scholar 

  • Copper, B., Lowe, B., Sorbi, A. (eds.): The connection between logical and thermodynamic irreversibility. In: Computation and Logic in the Real World. Lecture Notes in Computer Science, vol. 4497, pp. 446–454

  • Egan, C.A., Lineweaver, C.H.: A larger estimate of the entropy of the Universe. Astrophys. J. 710(2), 1831 (2010)

    Article  ADS  Google Scholar 

  • Funo, K., Watanabe, Y., Ueda, M.: Thermodynamic work gain from entanglement (2012). arXiv:1207.6872 [qu-ph]

  • Haranas, I., Gkigkitzis, I.: Ricci scalar and its relation in the evolution of the entropy and information of in the universe. Mod. Phys. Lett. A (2013a). Submitted, under review

  • Haranas, I., Gkigkitzis, I.: Bekestein bound of information number N and its relation to cosmological parameters in a Universe with and without cosmological constant. Mod. Phys. Lett. A 28(19), 1350077 (2013b)

    Article  ADS  MathSciNet  Google Scholar 

  • Haranas, I., Gkigkitzis, I.: The number of information bits related to the minimum quantum and gravitational masses in a vacuum dominated Universe. Astrophys. Space Sci. (2013c). doi:10.1007/s10509-013-1434-1

    MATH  Google Scholar 

  • Hoyle, F.: In: Stoops, R. (ed.) Proceedings of 11th Solvay Conference in Physics, the Structure and Evolution of the Universe, Brussels (1958)

    Google Scholar 

  • Islam, J.N.: An Introduction to Mathematical Cosmology, p. 32. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Ladyman, J., Presnell, S., Short, A.J., Groisman, B.: The use of the information-theoretic entropy in thermodynamics. Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Mod. Phys. 39(2), 315–324 (2008)

    Article  MATH  Google Scholar 

  • Landauer, R.: Dissipation and noise immunity in computation and communication. Nature 335, 779 (1988)

    Article  ADS  Google Scholar 

  • Lloyd, S.: Ultimate physical limits to computation. Nature 406, 1047–1054 (2000)

    Article  ADS  Google Scholar 

  • Lloyd, S.: Computational capacity of the Universe. Phys. Rev. Lett. 88, 237901 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon (2004). http://philsci-archive.pitt.edu/1729/

  • Shenker, R.: Logic and Entropy (2000). http://philsci-archive.pitt.edu/id/eprint/115

  • Valev, D.: Estimations of total mass and energy of the universe (2010). arXiv:1004.1035 [physics.gen-ph]

  • Wesson, P.S.: Is mass quantized (2003). arXiv:gr-qc/0309100v1. 20 Sep.

Download references

Acknowledgements

The authors want to thank an unknown reviewer who with his/her valuable comments help improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Haranas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gkigkitzis, I., Haranas, I. & Kirk, S. Number of information and its relation to the cosmological constant resulting from Landauer’s principle. Astrophys Space Sci 348, 553–557 (2013). https://doi.org/10.1007/s10509-013-1581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-013-1581-4

Keywords

Navigation