Skip to main content
Log in

The giant graviton on \( Ad{S_4} \times \mathbb{C}{\mathbb{P}^3} \) — Another step towards the emergence of geometry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct the giant graviton on \( Ad{S_4} \times \mathbb{C}{\mathbb{P}^3} \) out of a four-brane embedded in and moving on the complex projective space. This configuration is dual to the totally anti-symmetric Schur polynomial operator χR(A 1 B 1) in the 2 + 1-dimensional, \( \mathcal{N} = {6} \) super Chern-Simons ABJM theory. We demonstrate that this BPS solution of the D4-brane action is energetically degenerate with the point graviton solution and initiate a study of its spectrum of small fluctuations. Although the full computation of this spectrum proves to be analytically intractable, by perturbing around a “small” giant graviton, we find good evidence for a dependence of the spectrum on the size, α0, of the giant. This is a direct result of the changing shape of the worldvolume as it grows in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys.5 (2002) 809 [hep-th/0111222] [INSPIRE].

    MathSciNet  Google Scholar 

  4. D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063 [arXiv:0708.2272] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Berenstein, D.H. Correa and S.E. Vazquez, A study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Berenstein, D.H. Correa and S.E. Vazquez, Quantizing open spin chains with variable length: an example from giant gravitons, Phys. Rev. Lett. 95 (2005) 191601 [hep-th/0502172] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonsWith strings attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].

    Article  Google Scholar 

  9. R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonsWith strings attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [INSPIRE].

    Article  Google Scholar 

  10. D. Bekker, R. de Mello Koch and M. Stephanou, Giant gravitonsWith strings attached (III), JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].

    Google Scholar 

  12. W. Carlson, R. de Mello Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. de Mello Koch, B.A.E. Mohammed and S. Smith, Nonplanar integrability: beyond the SU(2) sector, arXiv:1106.2483 [INSPIRE].

  14. D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Berenstein and R. Cotta, Aspects of emergent geometry in the AdS/CFT context, Phys. Rev. D 74 (2006) 026006 [hep-th/0605220] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. M. Sheikh-Jabbari, Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture, JHEP 09 (2004) 017 [hep-th/0406214] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Sheikh-Jabbari and M. Torabian, Classification of all 1/2 BPS solutions of the tiny graviton matrix theory, JHEP 04 (2005) 001 [hep-th/0501001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. R. de Mello Koch and J. Murugan, Emergent spacetime, arXiv:0911.4817 [INSPIRE].

  19. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MATH  ADS  MathSciNet  Google Scholar 

  20. V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. D. Berenstein, Shape and holography: studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. R. de Mello Koch, Geometries from Young diagrams, JHEP 11 (2008) 061 [arXiv:0806.0685] [INSPIRE].

    Article  Google Scholar 

  24. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].

    ADS  Google Scholar 

  25. V. Balasubramanian, V. Jejjala and J. Simon, The Library of Babel, Int. J. Mod. Phys. D 14 (2005) 2181 [hep-th/0505123] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills from giant gravitons, JHEP 12 (2007) 006 [hep-th/0606087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Bagger and N. Lambert, Modeling multiple M 2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M 2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. J. Bagger and N. Lambert, Comments on multiple M 2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Gustavsson, One-loop corrections to Bagger-Lambert theory, Nucl. Phys. B 807 (2009) 315 [arXiv:0805.4443] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Nishioka and T. Takayanagi, Fuzzy ring from M 2-brane giant torus, JHEP 10 (2008) 082 [arXiv:0808.2691] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Berenstein and J. Park, The BPS spectrum of monopole operators in ABJM: towards a field theory description of the giant torus, JHEP 06 (2010) 073 [arXiv:0906.3817] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Sheikh-Jabbari and J. Simon, On half-BPS states of the ABJM theory, JHEP 08 (2009) 073 [arXiv:0904.4605] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Hamilton, J. Murugan, A. Prinsloo and M. Strydom, A note on dual giant gravitons in AdS 4 × CP 3, JHEP 04 (2009) 132 [arXiv:0901.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Berenstein and D. Trancanelli, Three-dimensional N = 6 SCFTs and their membrane dynamics, Phys. Rev. D 78 (2008) 106009 [arXiv:0808.2503] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Hamilton, J. Murugan and A. Prinsloo, Lessons from giant gravitons on AdS 5 × T 1,1, JHEP 06 (2010) 017 [arXiv:1001.2306] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Murugan and A. Prinsloo, ABJM dibaryon spectroscopy, JHEP 05 (2011) 129 [arXiv:1103.1163] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. N. Gutierrez, Y. Lozano and D. Rodriguez-Gomez, Charged particle-like branes in ABJM, JHEP 09 (2010) 101 [arXiv:1004.2826] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Lozano, M. Picos, K. Sfetsos and K. Siampos, ABJM baryon stability and Myers effect, JHEP 07 (2011) 032 [arXiv:1105.0939] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Herrero, Y. Lozano and M. Picos, Dielectric 5-branes and giant gravitons in ABJM, JHEP 08 (2011) 132 [arXiv:1107.5475] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4 /CF T 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N = 6 Chern-Simons theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. T.K. Dey, Exact large R-charge correlators in ABJM theory, arXiv:1105.0218 [INSPIRE].

  48. M. Pirrone, Giants on deformed backgrounds, JHEP 12 (2006) 064 [hep-th/0609173] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  50. S.R. Das, A. Jevicki and S.D. Mathur, Vibration modes of giant gravitons, Phys. Rev. D 63 (2001) 024013 [hep-th/0009019] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. A. Ronveaux, Heuns differential equations, Oxford University Press, Oxford U.K. (1995).

    MATH  Google Scholar 

  53. H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. T. Padmanabhan, Gravity as an emergent phenomenon, Int. J. Mod. Phys. D 17 (2008) 591 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. L. Sindoni, Gravity as an emergent phenomenon: a GFT perspective, arXiv:1105.5687 [INSPIRE].

  56. M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and Goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Duff, H. Lü and C. Pope, Supersymmetry without supersymmetry, Phys. Lett. B 409 (1997) 136 [hep-th/9704186] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Prinsloo.

Additional information

ArXiv ePrint: 1108.3084

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovannoni, D., Murugan, J. & Prinsloo, A. The giant graviton on \( Ad{S_4} \times \mathbb{C}{\mathbb{P}^3} \) — Another step towards the emergence of geometry. J. High Energ. Phys. 2011, 3 (2011). https://doi.org/10.1007/JHEP12(2011)003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)003

Keywords

Navigation