Skip to main content
Log in

Relevant deformations in open string field theory: a simple solution for lumps

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a remarkably simple solution of cubic open string field theory which describes inhomogeneous tachyon condensation. The solution is in one-to-one correspondence with the IR fixed point of the RG-flow generated in the two-dimensional worldsheet theory by integrating a relevant operator with mild enough OPE on the boundary. It is shown how the closed string overlap correctly captures the shift in the closed string one point function between the UV and the IR limits of the flow. Examples of lumps in non-compact and compact transverse directions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Rastelli and B. Zwiebach, Solving open string field theory with special projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [INSPIRE].

  7. E. Fuchs and M. Kroyter, On the validity of the solution of string field theory, JHEP 05 (2006) 006 [hep-th/0603195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Erler, Split string formalism and the closed string vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. T. Erler, Split string formalism and the closed string vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Erler, Tachyon vacuum in cubic superstring field theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Arroyo, Generating Erler-Schnabl-type solution for tachyon vacuum in cubic superstring field theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. S. Zeze, Tachyon potential in KBc subalgebra, Prog. Theor. Phys. 124 (2010) 567 [arXiv:1004.4351] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. S. Zeze, Regularization of identity based solution in string field theory, JHEP 10 (2010) 070 [arXiv:1008.1104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Arroyo, Comments on regularization of identity based solutions in string field theory, JHEP 11 (2010) 135 [arXiv:1009.0198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. B.-H. Lee, C. Park and D. Tolla, Marginal deformations as lower dimensional D-brane solutions in open string field theory, arXiv:0710.1342 [INSPIRE].

  20. O.-K. Kwon, Marginally deformed rolling tachyon around the tachyon vacuum in open string field theory, Nucl. Phys. B 804 (2008) 1 [arXiv:0801.0573] [INSPIRE].

    Article  ADS  Google Scholar 

  21. Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Erler, Marginal solutions for the superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Fuchs and M. Kroyter, Analytical solutions of open string field theory, Phys. Rept. 502 (2011) 89 [arXiv:0807.4722] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Schnabl, Algebraic solutions in open string field theoryA lightning review, arXiv:1004.4858 [INSPIRE].

  27. L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Bonora, C. Maccaferri, R. Scherer Santos and D. Tolla, Ghost story. I. Wedge states in the oscillator formalism, JHEP 09 (2007) 061 [arXiv:0706.1025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. L. Bonora, C. Maccaferri, R. Scherer Santos and D. Tolla, Ghost story. II. The midpoint ghost vertex, JHEP 11 (2009) 075 [arXiv:0908.0055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. L. Bonora, C. Maccaferri and D. Tolla, Ghost story. III. Back to ghost number zero, JHEP 11 (2009) 086 [arXiv:0908.0056] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. I. Affleck and A.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J.A. Harvey, D. Kutasov and E.J. Martinec, On the relevance of tachyons, hep-th/0003101 [INSPIRE].

  34. S. Elitzur, E. Rabinovici and G. Sarkissian, On least action D-branes, Nucl. Phys. B 541 (1999) 246 [hep-th/9807161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Moeller, A. Sen and B. Zwiebach, D-branes as tachyon lumps in string field theory, JHEP 08 (2000) 039 [hep-th/0005036] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Fendley, F. Lesage and H. Saleur, Solving 1D plasmas and 2D boundary problems using Jack polynomials and functional relations, J. Stat. Phys. 79 (1995) 799 [hep-th/9409176] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. P. Fendley, H. Saleur and N. Warner, Exact solution of a massless scalar field with a relevant boundary interaction, Nucl. Phys. B 430 (1994) 577 [hep-th/9406125] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L. Rastelli, A. Sen and B. Zwiebach, Boundary CFT construction of D-branes in vacuum string field theory, JHEP 11 (2001) 045 [hep-th/0105168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. I. Ellwood, The closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. J.A. Harvey, S. Kachru, G.W. Moore and E. Silverstein, Tension is dimension, JHEP 03 (2000) 001 [hep-th/9909072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. E. Witten, Some computations in background independent off-shell string theory, Phys. Rev. D 47 (1993) 3405 [hep-th/9210065] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. D. Kutasov, M. Mariño and G.W. Moore, Some exact results on tachyon condensation in string field theory, JHEP 10 (2000) 045 [hep-th/0009148] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].

  48. D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP 08 (2003) 048 [hep-th/0211012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Kroyter, On string fields and superstring field theories, JHEP 08 (2009) 044 [arXiv:0905.1170] [INSPIRE].

    ADS  Google Scholar 

  50. M. Kroyter, Comments on superstring field theory and its vacuum solution, JHEP 08 (2009) 048 [arXiv:0905.3501] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Kroyter, Superstring field theory in the democratic picture, arXiv:0911.2962 [INSPIRE].

  52. I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Tachyon solution in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 158 (2009) 320 [arXiv:0804.2017] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. I. Arefeva and R. Gorbachev, On gauge equivalence of tachyon solutions in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 165 (2010) 1512 [arXiv:1004.5064] [INSPIRE].

    Article  Google Scholar 

  54. T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. T. Erler and C. Maccaferri, Comments on lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].

    Article  ADS  Google Scholar 

  56. L. Bonora, S. Giaccari and D. Tolla, The energy of the analytic lump solution in SFT, JHEP 08 (2011) 158 [arXiv:1105.5926] [INSPIRE].

    Article  ADS  Google Scholar 

  57. L. Bonora, S. Giaccari and D. Tolla, Lump solutions in SFT. Complements, arXiv:1109.4336 [INSPIRE].

  58. L. Bonora, S. Giaccari and D. Tolla, Analytic solutions for Dp-branes in SFT, arXiv:1106.3914 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Maccaferri.

Additional information

ArXiv ePrint: 1009.4158

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonora, L., Maccaferri, C. & Tolla, D.D. Relevant deformations in open string field theory: a simple solution for lumps. J. High Energ. Phys. 2011, 107 (2011). https://doi.org/10.1007/JHEP11(2011)107

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)107

Keywords

Navigation