Skip to main content
Log in

Enhancements of weak gauge boson scattering processes at the CERN LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Current CERN Large Hadron Collider data on the 126 GeV standard model-like Higgs boson suggest the possibility of larger Higgs boson couplings with the weak gauge bosons, g hVV , than those in the standard model. We use the Georgi-Machacek model as an explicit model to realize such a scenario. We find that the g hVV couplings can be larger than the standard model value by a factor of about 1.3 maximally in the parameter region consistent with the current Higgs boson search data and allowed by various other constraints. We then show how the modified g hVV couplings lead to enhancements in various weak boson scattering processes. This can be clearly observed as excesses in the transverse mass distributions at around 126 GeV and also the mass of heavy Higgs bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. S. Kanemura, M. Kikuchi and K. Yagyu, Probing exotic Higgs sectors from the precise measurement of Higgs boson couplings, Phys. Rev. D 88 (2013) 015020 [arXiv:1301.7303] [INSPIRE].

    ADS  Google Scholar 

  4. J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].

    ADS  Google Scholar 

  5. H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M.S. Chanowitz and M. Golden, Higgs Boson Triplets With M (W ) = M (Z) cos θω, Phys. Lett. B 165 (1985) 105 [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].

    ADS  Google Scholar 

  8. J. Gunion, R. Vega and J. Wudka, Naturalness problems for rho = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].

    ADS  Google Scholar 

  9. A. Akeroyd, Cascade decays of triplet Higgs bosons at LEP-2, Phys. Lett. B 442 (1998) 335 [hep-ph/9807409] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].

    ADS  Google Scholar 

  11. C.-W. Chiang and K. Yagyu, Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model, JHEP 01 (2013) 026 [arXiv:1211.2658] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Englert, E. Re and M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC, Phys. Rev. D 87 (2013) 095014 [arXiv:1302.6505] [INSPIRE].

    ADS  Google Scholar 

  13. C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].

    ADS  Google Scholar 

  14. J. Bagger et al., The strongly interacting W W system: Gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [INSPIRE].

    ADS  Google Scholar 

  15. J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [INSPIRE].

    ADS  Google Scholar 

  16. J. Butterworth, B. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].

    ADS  Google Scholar 

  17. M.S. Chanowitz, The no-Higgs signal: Strong WW scattering at the LHC, Czech. J. Phys. 55 (2005) B45 [hep-ph/0412203] [INSPIRE].

    Article  Google Scholar 

  18. A. Ballestrero, G. Bevilacqua and E. Maina, A complete parton level analysis of boson-boson scattering and ElectroWeak Symmetry Breaking in lv + four jets production at the LHC, JHEP 05 (2009) 015 [arXiv:0812.5084] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Cheung, C.-W. Chiang and T.-C. Yuan, Partially Strong WW Scattering, Phys. Rev. D 78 (2008) 051701 [arXiv:0803.2661] [INSPIRE].

    ADS  Google Scholar 

  20. J. Chang, K. Cheung, C.-T. Lu and T.-C. Yuan, WW Scattering in the Era of Post Higgs Discovery, Phys. Rev. D 87 (2013) 093005 [arXiv:1303.6335] [INSPIRE].

    ADS  Google Scholar 

  21. S. Chang, C.A. Newby, N. Raj and C. Wanotayaroj, Revisiting Theories with Enhanced Higgs Couplings to Weak Gauge Bosons, Phys. Rev. D 86 (2012) 095015 [arXiv:1207.0493] [INSPIRE].

    ADS  Google Scholar 

  22. M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D 87 (2013) 015012 [arXiv:1211.6029] [INSPIRE].

    ADS  Google Scholar 

  23. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  25. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001.

  26. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  27. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).

  28. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  29. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗) →ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).

  30. CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002.

  31. CMS collaboration, Evidence for a particle decaying to W+W- in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003.

  32. CMS collaboration, Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-004.

  33. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.

  34. C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].

    Article  ADS  Google Scholar 

  35. ATLAS collaboration, Search for the Standard Model Higgs boson in the HZγ decay mode with pp collisions at \( \sqrt{s} \) =7 and 8 TeV, ATLAS-CONF-2013-009 (2013).

  36. CMS collaboration, Search for the standard model Higgs boson in the Z boson plus a photon channel in pp collisions at \( \sqrt{s} \) =7 and 8 TeV, CMS-PAS-HIG-13-006.

  37. J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel, Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405] [INSPIRE].

    ADS  Google Scholar 

  38. M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C.-W. Chiang and K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, Phys. Rev. D 87 (2013) 033003 [arXiv:1207.1065] [INSPIRE].

    ADS  Google Scholar 

  40. M. Aoki and S. Kanemura, Unitarity bounds in the Higgs model including triplet fields with custodial symmetry, Phys. Rev. D 77 (2008) 095009 [arXiv:0712.4053] [INSPIRE].

    ADS  Google Scholar 

  41. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  42. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  43. M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  45. V.D. Barger, A.D. Martin and R. Phillips, Evidence for the t Quark in \( p\overline{p} \) Collider Data, Phys. Lett. B 125 (1983) 339 [INSPIRE].

    Article  ADS  Google Scholar 

  46. V.D. Barger, T. Han and J. Ohnemus, Heavy leptons at hadron supercolliders, Phys. Rev. D 37 (1988) 1174 [INSPIRE].

    ADS  Google Scholar 

  47. T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in p p collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [INSPIRE].

    ADS  Google Scholar 

  49. P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].

    Article  ADS  Google Scholar 

  50. P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Vector boson fusion at NNLO in QCD: SM Higgs and beyond, Phys. Rev. D 85 (2012) 035002 [arXiv:1109.3717] [INSPIRE].

    ADS  Google Scholar 

  52. Y.Q. Fang, B. Mellado, S. Paganis, W. Quayle and Wu Sau Lan, A study of the ttbar+jets background at LHC, ATL-PHYS-2004-035.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Wei Chiang.

Additional information

ArXiv ePrint: 1307.7526

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CW., Kuo, AL. & Yagyu, K. Enhancements of weak gauge boson scattering processes at the CERN LHC. J. High Energ. Phys. 2013, 72 (2013). https://doi.org/10.1007/JHEP10(2013)072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)072

Keywords

Navigation