Skip to main content
Log in

One-loop helicity amplitudes for top quark pair production in Randall-Sundrum model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper, we show how to calculate analytically the one-loop helicity amplitudes for the process \( q\bar{q} \to t\bar{t} \) induced by KK gluon, using the spinor helicity formalism. A minimal set of Feynman rules which are uniquely fixed by gauge invariance and the color representation of the KK gluon are derived and used in the calculation. Our results can be applied to a variety of models containing a massive color octet vector boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].

    Article  ADS  Google Scholar 

  3. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].

    ADS  Google Scholar 

  4. M. Guchait, F. Mahmoudi and K. Sridhar, Tevatron constraint on the Kaluza-Klein gluon of the bulk Randall-Sundrum model, JHEP 05 (2007) 103 [hep-ph/0703060] [SPIRES].

    Article  ADS  Google Scholar 

  5. B. Lillie, J. Shu and T.M.P. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [SPIRES].

    ADS  Google Scholar 

  6. A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191] [SPIRES].

    ADS  Google Scholar 

  7. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].

    Article  ADS  Google Scholar 

  8. U. Baur and L.H. Orr, Searching for \( t\bar{t} \) resonances at the Large Hadron Collider, Phys. Rev. D 77 (2008) 114001 [arXiv:0803.1160] [SPIRES].

    ADS  Google Scholar 

  9. CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].

    ADS  Google Scholar 

  10. M.T. Bowen, S.D. Ellis and D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron, Phys. Rev. D 73 (2006) 014008 [hep-ph/0509267] [SPIRES].

    ADS  Google Scholar 

  11. O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  12. D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A polarized view of the top asymmetry, arXiv:1105.3743 [SPIRES].

  13. A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [SPIRES].

    ADS  Google Scholar 

  14. P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].

    Article  ADS  Google Scholar 

  15. W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in \( p\bar{p} \) collisions, Phys. Rev. D 40 (1989) 54 [SPIRES].

    ADS  Google Scholar 

  16. W. Beenakker, W.L.van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [SPIRES].

    Article  ADS  Google Scholar 

  17. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-backward asymmetry of topl quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].

    ADS  Google Scholar 

  18. M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order, JHEP 11 (2010) 039 [arXiv:1008.0742] [SPIRES].

    Article  ADS  Google Scholar 

  19. B.C. Allanach, F. Mahmoudi, J.P. Skittrall and K. Sridhar, Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model, JHEP 03 (2010) 014 [arXiv:0910.1350] [SPIRES].

    Article  ADS  Google Scholar 

  20. H.X. Zhu et al., Hadronic top-quark pair production induced by massive color-octet vector at next-to-leading order QCD (2011).

  21. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  22. S.J. Huber and Q. Shafi, Higgs mechanism and bulk gauge boson masses in the Randall-Sundrum model, Phys. Rev. D 63 (2001) 045010 [hep-ph/0005286] [SPIRES].

    ADS  Google Scholar 

  23. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].

    ADS  Google Scholar 

  25. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS5, JHEP 11 (2001) 003 [hep-th/0108114] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Novales-Sanchez and J.J. Toscano, Gauge invariance and quantization of Yang-Mills theories in extra dimensions, Phys. Rev. D 82 (2010) 116012 [arXiv:1008.4638] [SPIRES].

    ADS  Google Scholar 

  28. A. Flores-Tlalpa, J. Montano, H. Novales-Sanchez, F. Ramirez-Zavaleta and J.J. Toscano, One-loop effects of extra dimensions on the WWγ and WWZ vertices, Phys. Rev. D 83 (2011) 016011 [arXiv:1009.0063] [SPIRES].

    ADS  Google Scholar 

  29. V. Ahrens, A. Ferroglia, B.D. Pecjak and L.L. Yang, Precision predictions for the \( t + \bar{t} \) production cross section at hadron colliders, arXiv:1105.5824 [SPIRES].

  30. M. Böhm and W. Hollik, Radiative corrections to polarized e e + annihilation in the standard electroweak model, Nucl. Phys. B 204 (1982) 45 [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Czakon and A. Mitov, Inclusive heavy flavor hadroproduction in NLO QCD: the exact analytic result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [SPIRES].

    Article  ADS  Google Scholar 

  32. J.G. Korner and Z. Merebashvili, One-loop corrections to four-point functions with two external massive fermions and two external massless partons, Phys. Rev. D 66 (2002) 054023 [hep-ph/0207054] [SPIRES].

    ADS  Google Scholar 

  33. S. Badger, R. Sattler and V. Yundin, One-loop helicity amplitudes for \( t\bar{t} \) production at hadron colliders, Phys. Rev. D 83 (2011) 074020 [arXiv:1101.5947] [SPIRES].

    ADS  Google Scholar 

  34. Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].

    ADS  Google Scholar 

  35. Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].

    Article  ADS  Google Scholar 

  36. R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\bar{p} \to {{{{W^\pm }}} \left/ {{{Z_0}}} \right.} \)+ jets, Nucl. Phys. B 262 (1985) 235 [SPIRES].

    Article  ADS  Google Scholar 

  37. S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [SPIRES].

    Article  ADS  Google Scholar 

  38. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].

    Article  ADS  Google Scholar 

  39. J.C. Pati and A. Salam, Are the new particles color gluons?, Phys. Rev. Lett. 34 (1975) 613 [SPIRES].

    Article  ADS  Google Scholar 

  40. L.J. Hall and A.E. Nelson, Heavy gluons and monojets, Phys. Lett. B 153 (1985) 430 [SPIRES].

    ADS  Google Scholar 

  41. J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [SPIRES].

    Article  ADS  Google Scholar 

  42. C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [SPIRES].

    ADS  Google Scholar 

  43. K.D. Lane and M.V. Ramana, Walking technicolor signatures at hadron colliders, Phys. Rev. D 44 (1991) 2678 [SPIRES].

    ADS  Google Scholar 

  44. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  45. P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].

    ADS  Google Scholar 

  46. D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, arXiv:0912.3259 [SPIRES].

  47. R.S. Chivukula, E.H. Simmons and C.P. Yuan, Axigluons cannot explain the observed top quark forward-backward asymmetry, Phys. Rev. D 82 (2010) 094009 [arXiv:1007.0260] [SPIRES].

    ADS  Google Scholar 

  48. B. Xiao, Y.-K. Wang and S.-H. Zhu, New color-octet vector boson?, arXiv:1011.0152 [SPIRES].

  49. Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].

    Article  ADS  Google Scholar 

  50. A.R. Zerwekh, The axigluon, a four-site model and the top quark forward-backward asymmetry at the Tevatron, arXiv:1103.0956 [SPIRES].

  51. J. Shu, K. Wang and G. Zhu, A revisit to top quark forward-backward asymmetry, arXiv:1104.0083 [SPIRES].

  52. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in \( t\bar{t} \) production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [SPIRES].

    ADS  Google Scholar 

  53. U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, arXiv:1106.0529 [SPIRES].

  54. A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [SPIRES].

    Article  ADS  Google Scholar 

  55. A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Sheng Li.

Additional information

ArXiv ePrint: 1106.2243

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H.X., Li, C.S., Dai, L. et al. One-loop helicity amplitudes for top quark pair production in Randall-Sundrum model. J. High Energ. Phys. 2011, 43 (2011). https://doi.org/10.1007/JHEP09(2011)043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)043

Keywords

Navigation