Skip to main content
Log in

Tau-functions for quiver gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The prepotentials for the quiver supersymmetric gauge theories are defined as quasiclassical tau-functions, depending on two different sets of variables: the parameters of the UV gauge theory or the bare compexified couplings, and the vacuum condensates of the theory in IR. The bare couplings are introduced as periods on the UV base curve, and the consistency of corresponding gradient formulas for the tau-functions is proven using the Riemann bilinear relations. It is shown, that dependence of generalised prepotentials for the quiver gauge theories upon the bare couplings turns to coincide with the corresponding formulas for the derivatives of tau-functions for the isomonodromic deformations. Computations for the SU(2) quiver gauge theories with bi- and tri-fundamental matter are performed explicitly and analysed in the context of 4d/2d correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gaiotto, \( \mathcal{N}=2 \) dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, RG equations from Whitham hierarchy, Nucl. Phys. B 527 (1998) 690 [hep-th/9802007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, in Ian Kogan memorial volume, From fields to strings: circumnavigating theoretical physics, pg. 581 [hep-th/0302191] [INSPIRE].

  5. A. Marshakov and N. Nekrasov, Extended Seiberg-Witten theory and integrable hierarchy, JHEP 01 (2007) 104 [hep-th/0612019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Marshakov, On microscopic origin of integrability in Seiberg-Witten theory, Theor. Math. Phys. 154 (2008) 362 [arXiv:0706.2857] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  8. N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in \( \mathcal{N}=2 \) supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  11. I. Krichever, The tau function of the universal Whitham hierarchy, matrix models and topological field theories, Commun. Pure Appl. Math. 47 (1994) 437 [hep-th/9205110] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Teschner and G. Vartanov, 6j symbols for the modular double, quantum hyperbolic geometry and supersymmetric gauge theories, arXiv:1202.4698 [INSPIRE].

  13. L. Hollands, C.A. Keller and J. Song, Towards a 4d/2d correspondence for Sicilian quivers, JHEP 10 (2011) 100 [arXiv:1107.0973] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Gaiotto and J. Maldacena, The gravity duals of \( \mathcal{N}=2 \) superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A.V. Zotov, 1 + 1 Gaudin model, SIGMA 7 (2011) 067 [arXiv:1012.1072] [INSPIRE].

    MathSciNet  Google Scholar 

  17. D. Nanopoulos and D. Xie, Hitchin equation, singularity and \( \mathcal{N}=2 \) superconformal field theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. O. Chacaltana, J. Distler and Y. Tachikawa, Gaiotto duality for the twisted A 2N −1 series, arXiv:1212.3952 [INSPIRE].

  19. A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral duality in integrable systems from AGT conjecture, JETP Lett. 97 (2013) 45 [Pisma Zh. Eksp. Teor. Fiz. 97 (2013) 49] [arXiv:1204.0913] [INSPIRE].

  20. A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional \( \mathcal{N}=2 \) quiver gauge theories, arXiv:1211.2240 [INSPIRE].

  22. S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Landau-Ginzburg topological theories in the framework of GKM and equivalent hierarchies, Mod. Phys. Lett. A 8 (1993) 1047 [hep-th/9208046] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. Y. Ohyama, Differential relations of theta functions, Osaka J. Math. 35 (1995) 431.

    MathSciNet  Google Scholar 

  24. Al. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. Al.B. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Sov. Phys. JETP 63 (1986) 1061 [Zh. Eksp. Teor. Fiz. 90 (1986) 1808].

  26. Al.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.

    Article  MathSciNet  Google Scholar 

  27. T.W. Grimm, A. Klemm, M. Mariño and M. Weiss, Direct integration of the topological string, JHEP 08 (2007) 058 [hep-th/0702187] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in \( \mathcal{N}=2 \) SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Poghossian, Recursion relations in CFT and \( \mathcal{N}=2 \) SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Eguchi and K. Maruyoshi, Penner type matrix model and Seiberg-Witten theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A.B. Zamolodchikov and Al.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M.V. Feigin and A.P. Veselov, Coxeter discriminants and logarithmic Frobenius structures, Adv. Math. 212 (2007) 143 [math-ph/0512095].

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields I, Publ. RIMS 14 (1978) 223.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields II, Publ. RIMS 15 (1979) 201.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields III, Publ. RIMS 15 (1979) 577.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields IV, Publ. RIMS 15 (1979) 871.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields V, Publ. RIMS 16 (1980) 531.

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Gamayun, N. Iorgov, O. Lisovyy, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP 10 (2012) 038 [Erratum ibid. 10 (2012) 183] [arXiv:1207.0787] [INSPIRE].

  39. Al. Zamolodchikov, Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions, Nucl. Phys. B 285 (1987) 481 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Marshakov, Seiberg-Witten theory and extended Toda hierarchy, JHEP 03 (2008) 055 [arXiv:0712.2802] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marshakov.

Additional information

ArXiv ePrint: 1303.0753

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshakov, A. Tau-functions for quiver gauge theories. J. High Energ. Phys. 2013, 68 (2013). https://doi.org/10.1007/JHEP07(2013)068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)068

Keywords

Navigation