Skip to main content
Log in

Off-diagonal terms in Yukawa textures of the Type-III 2-Higgs doublet model and light charged Higgs boson phenomenology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss flavor-violating constraints and consequently possible charged Higgs boson phenomenology emerging from a four-zero Yukawa texture embedded within the Type-III 2-Higgs Doublet Model (2HDM-III). Firstly, we show in detail how we can obtain several kinds of 2HDMs when some parameters in the Yukawa texture are absent. Secondly, we present a comprehensive study of the main B-physics constraints on such parameters induced by flavor-changing processes, in particular on the off-diagonal terms of such a texture: i.e., from μe universality in τ decays, several leptonic B-decays (Bτ ν, Dμν and D s ), the semi-leptonic transition BDτν, plus BX s γ, including B 0\( \overline{B} \) 0 mixing, B s μ + μ and the radiative decay Zb \( \overline{b} \). Thirdly, having selected the surviving 2HDM-III parameter space, we show that the H c \( \overline{b} \) coupling can be very large over sizable expanses of it, in fact, a very different situation with respect to 2HDMs with a flavor discrete symmetry (i.e., \( \mathcal{Z} \) 2) and very similar to the case of the Aligned-2HDM (A2HDM) as well as of models with three or more Higgs doublets. Fourthly, we study in detail the ensuing H ± phenomenology at the Large Hadron Collider (LHC), chiefly the c \( \overline{b} \)H + production mode and the H +c \( \overline{b} \) decay channel while assuming τ + ν τ decays in the former and tbH + production in the latter, showing that significant scope exists in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579.

    Article  Google Scholar 

  2. S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264.

    Article  ADS  Google Scholar 

  3. A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519 (1968) 367 [INSPIRE].

    Google Scholar 

  4. V.D. Barger, J.L. Hewett and R.J.N. Phillips, New Constraints on the Charged Higgs Sector in Two Higgs Doublets Models, D 41 (1990) 3421.

  5. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  7. T. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Google Scholar 

  8. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  9. H. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  10. L.J. Hall and M.B. Wise, Flavor changing Higgs - boson couplings, Nucl. Phys. B 187 (1981) 397 [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].

    ADS  Google Scholar 

  12. R.M. Barnett, G. Senjanović, L. Wolfenstein and D. Wyler, Implications of a light Higgs scalar, Phys. Lett. B 136 (1984) 191 [INSPIRE].

    ADS  Google Scholar 

  13. R.M. Barnett, G. Senjanović and D. Wyler, Tracking down Higgs scalars with enhanced couplings, Phys. Rev. D 30 (1984) 1529 [INSPIRE].

    ADS  Google Scholar 

  14. Y. Grossman, Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B 426 (1994) 355 [hep-ph/9401311] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].

    ADS  Google Scholar 

  16. A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].

    ADS  Google Scholar 

  17. A. Akeroyd and W.J. Stirling, Light charged Higgs scalars at high-energy e + e colliders, Nucl. Phys. B 447 (1995) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  18. E. Ma, Utility of a Special Second Scalar Doublet, Mod. Phys. Lett. A 23 (2008) 647 [arXiv:0802.2917] [INSPIRE].

    ADS  Google Scholar 

  19. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  20. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  21. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  23. A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].

    ADS  Google Scholar 

  24. Y.-F. Zhou, Texture of Yukawa coupling matrices in general two Higgs doublet model, J. Phys. G 30 (2004) 783 [hep-ph/0307240] [INSPIRE].

    ADS  Google Scholar 

  25. S. Kanemura, T. Ota and K. Tsumura, Lepton flavor violation in Higgs boson decays under the rare tau decay results, Phys. Rev. D 73 (2006) 016006 [hep-ph/0505191] [INSPIRE].

    ADS  Google Scholar 

  26. S. Kanemura, K. Matsuda, T. Ota, T. Shindou, E. Takasugi and K. Tsumura, Search for lepton flavor violation in the Higgs boson decay at a linear collider, Phys. Lett. B 599 (2004) 83 [hep-ph/0406316] [INSPIRE].

    ADS  Google Scholar 

  27. T. Cheng and M. Sher, Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets, Phys. Rev. D 35 (1987) 3484 [INSPIRE].

    ADS  Google Scholar 

  28. D. Atwood, L. Reina and A. Soni, Phenomenology of two Higgs doublet models with flavor changing neutral currents, Phys. Rev. D 55 (1997) 3156 [hep-ph/9609279] [INSPIRE].

    ADS  Google Scholar 

  29. J. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, Measuring the fermionic couplings of the Higgs boson at future colliders as a probe of a non-minimal flavor structure, Phys. Rev. D 71 (2005) 015014 [hep-ph/0410391] [INSPIRE].

    ADS  Google Scholar 

  30. J. Diaz-Cruz, J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Yukawa Textures and Charged Higgs Boson Phenomenology in the 2HDM-III, Phys. Rev. D 79 (2009) 095025 [arXiv:0902.4490] [INSPIRE].

    ADS  Google Scholar 

  31. F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  32. H. Fritzsch, Calculating the Cabibbo Angle, Phys. Lett. B 70 (1977) 436 [INSPIRE].

    ADS  Google Scholar 

  33. H. Fritzsch and Z.-z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B 555 (2003) 63 [hep-ph/0212195] [INSPIRE].

    ADS  Google Scholar 

  34. J. Hernandez-Sanchez, L. Lopez-Lozano, R. Noriega-Papaqui and A. Rosado, Couplings of quarks in the Partially Aligned 2HDM with a four-zero texture Yukawa matrix, Phys. Rev. D 85 (2012) 071301 [arXiv:1106.5035] [INSPIRE].

    ADS  Google Scholar 

  35. J. Barradas Guevara, F. Cazarez Bush, A. Cordero Cid, O. Felix Beltran, J. Hernandez Sanchez and R. Noriega Papaqui, Implications of Yukawa Textures in the decay H +W +γ within the 2HDM-III, J. Phys. G 37 (2010) 115008 [arXiv:1002.2626] [INSPIRE].

    ADS  Google Scholar 

  36. A. Cordero-Cid, O. Felix-Beltran, J. Hernandez-Sanchez and R. Noriega-Papaqui, Implications of Yukawa texture in the charged Higgs boson phenomenology within 2HDM-III, PoS(Charged 2010)042, [arXiv:1105.4951] [INSPIRE].

  37. M. Gomez-Bock and R. Noriega-Papaqui, Flavor violating decays of the Higgs bosons in the THDM-III, J. Phys. G 32 (2006) 761 [hep-ph/0509353] [INSPIRE].

    ADS  Google Scholar 

  38. J. Hernandez-Sanchez, C. Honorato, M. Perez and J. Toscano, The γγϕ i ϕ j processes in the type-III two-Higgs-doublet model, Phys. Rev. D 85 (2012) 015020 [arXiv:1108.4074] [INSPIRE].

    ADS  Google Scholar 

  39. M. Aoki, R. Guedes, S. Kanemura, S. Moretti, R. Santos and K. Yagyu, Light Charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].

    ADS  Google Scholar 

  40. S. Moretti, Pair production of charged Higgs scalars from electroweak gauge boson fusion, J. Phys. G 28 (2002) 2567 [hep-ph/0102116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. S. Moretti, Improving the discovery potential of charged Higgs bosons at the Tevatron and Large Hadron Collider, Pramana 60 (2003) 369 [hep-ph/0205104] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Gunion, H. Haber, F. Paige, W.-K. Tung and S. Willenbrock, Neutral and Charged Higgs Detection: Heavy Quark Fusion, Top Quark Mass Dependence and Rare Decays, Nucl. Phys. B 294 (1987) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Diaz-Cruz and O. Sampayo, Contribution of gluon fusion to the production of charged Higgs at hadron colliders, Phys. Rev. D 50 (1994) 6820 [INSPIRE].

    ADS  Google Scholar 

  44. S. Moretti and D. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [INSPIRE].

    ADS  Google Scholar 

  45. D.J. Miller, S. Moretti, D. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].

    ADS  Google Scholar 

  46. D0 collaboration, V. Abazov et al., Search for charged Higgs bosons in top quark decays, Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811] [INSPIRE].

    ADS  Google Scholar 

  47. CDF collaboration, T. Aaltonen et al., Search for charged Higgs bosons in decays of top quarks in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269] [INSPIRE].

    Article  ADS  Google Scholar 

  48. ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).

  49. ATLAS collaboration, Search for charged Higgs bosons decaying via H +τ ν in t \( \overline{t} \) events using 4.6 f b −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-011 (2012).

  50. CMS collaboration, H +τ in Top quark decays, CMS-PAS-HIG-11-008.

  51. A. Akeroyd, Hidden top quark decays to charged Higgs scalars at the Tevatron, hep-ph/9509203 [INSPIRE].

  52. A. Akeroyd, Three body decays of Higgs bosons at LEP-2 and application to a hidden fermiophobic Higgs, Nucl. Phys. B 544 (1999) 557 [hep-ph/9806337] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Akeroyd, S. Moretti and J. Hernandez-Sanchez, Light charged Higgs bosons decaying to charm and bottom quarks in models with two or more Higgs doublets, Phys. Rev. D 85 (2012) 115002 [arXiv:1203.5769] [INSPIRE].

    ADS  Google Scholar 

  54. H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the flipped two Higgs doublet model, Phys. Rev. D 81 (2010) 075016 [arXiv:1002.4916] [INSPIRE].

    ADS  Google Scholar 

  55. F. Borzumati and C. Greub, 2HDMs predictions for \( \overline{B} \)X s γ in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [INSPIRE].

    ADS  Google Scholar 

  56. F. Borzumati and C. Greub, Two Higgs doublet model predictions for \( \overline{B} \)X s γ in NLO QCD: Addendum, Phys. Rev. D 59 (1999) 057501 [hep-ph/9809438] [INSPIRE].

    ADS  Google Scholar 

  57. M. Misiak et al., Estimate of B(\( \overline{B} \)X s γ) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  59. CDF, D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  60. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  61. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  62. S. Kanemura and H.-A. Tohyama, Nondecoupling effects of Higgs bosons on e + e W (L)+W (L)− in the two doublet model, Phys. Rev. D 57 (1998) 2949 [hep-ph/9707454] [INSPIRE].

    ADS  Google Scholar 

  63. S. Kanemura, Enhancement of loop induced H ± W Z 0 vertex in two Higgs doublet model, Phys. Rev. D 61 (2000) 095001 [hep-ph/9710237] [INSPIRE].

    ADS  Google Scholar 

  64. S. Kanemura, Possible enhancement of the e + e H ± W cross-section in the two Higgs doublet model, Eur. Phys. J. C 17 (2000) 473 [hep-ph/9911541] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, Mass matrix ansatz and lepton flavor violation in the THDM-III, Phys. Rev. D 69 (2004) 095002 [hep-ph/0401194] [INSPIRE].

    ADS  Google Scholar 

  66. O. Félix-Beltrán, F.F. González-Canales, J. Hernández-Sánchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, A fit of a four-zeros Yukawa texture with CKM matrix elements in the framework of the 2HDM-III, work in progress.

  67. J. Bijnens, J. Lu and J. Rathsman, Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings, JHEP 05 (2012) 118 [arXiv:1111.5760] [INSPIRE].

    Article  ADS  Google Scholar 

  68. R. Roberts, A. Romanino, G.G. Ross and L. Velasco-Sevilla, Precision test of a fermion mass texture, Nucl. Phys. B 615 (2001) 358 [hep-ph/0104088] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Frigerio, S. Kaneko, E. Ma and M. Tanimoto, Quaternion family symmetry of quarks and leptons, Phys. Rev. D 71 (2005) 011901 [hep-ph/0409187] [INSPIRE].

    ADS  Google Scholar 

  70. P.H. Frampton and S. Matsuzaki, Renormalizable A 4 Model for Lepton Sector, arXiv:0806.4592 [INSPIRE].

  71. P.H. Frampton, T.W. Kephart and S. Matsuzaki, Simplified Renormalizable T-prime Model for Tribimaximal Mixing and Cabibbo Angle, Phys. Rev. D 78 (2008) 073004 [arXiv:0807.4713] [INSPIRE].

    ADS  Google Scholar 

  72. T. Fukuyama, H. Sugiyama and K. Tsumura, Phenomenology in the Higgs Triplet Model with the A 4 Symmetry, Phys. Rev. D 82 (2010) 036004 [arXiv:1005.5338] [INSPIRE].

    ADS  Google Scholar 

  73. T. Fukuyama, H. Sugiyama and K. Tsumura, Phenomenology in the Zee Model with the A 4 Symmetry, Phys. Rev. D 83 (2011) 056016 [arXiv:1012.4886] [INSPIRE].

    ADS  Google Scholar 

  74. A. Aranda, C. Bonilla, R. Ramos and A.D. Rojas, Model of flavor with quaternion symmetry, Phys. Rev. D 84 (2011) 016009 [arXiv:1105.6373] [INSPIRE].

    ADS  Google Scholar 

  75. A. Aranda, C. Bonilla and A.D. Rojas, Neutrino masses generation in a Z 4 model, Phys. Rev. D 85 (2012) 036004 [arXiv:1110.1182] [INSPIRE].

    ADS  Google Scholar 

  76. A. Aranda, C. Bonilla and J.L. Diaz-Cruz, Three generations of Higgses and the cyclic groups, Phys. Lett. B 717 (2012) 248 [arXiv:1204.5558] [INSPIRE].

    ADS  Google Scholar 

  77. G. Branco, D. Emmanuel-Costa and C. Simoes, Nearest-Neighbour Interaction from an Abelian Symmetry and Deviations from Hermiticity, Phys. Lett. B 690 (2010) 62 [arXiv:1001.5065] [INSPIRE].

    ADS  Google Scholar 

  78. F. Botella, G. Branco and M. Rebelo, Invariants and Flavour in the General Two-Higgs Doublet Model, Phys. Lett. B 722 (2013) 76 [arXiv:1210.8163] [INSPIRE].

    ADS  Google Scholar 

  79. H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D 79 (2009) 115022 [arXiv:0903.2246] [INSPIRE].

    ADS  Google Scholar 

  80. M. Krawczyk and D. Temes, 2HDM(II) radiative corrections in leptonic tau decays, Eur. Phys. J. C 44 (2005) 435 [hep-ph/0410248] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Y.-S. Tsai, Decay Correlations of Heavy Leptons in e + e + , Phys. Rev. D 4 (1971) 2821 [Erratum ibid. D 13 (1976) 771] [INSPIRE].

    ADS  Google Scholar 

  82. BaBar collaboration, B. Aubert et al., Measurements of Charged Current Lepton Universality and |V us| using Tau Lepton Decays to e \( \overline{\nu} \) e ν τ , μ \( \overline{\nu} \) μ ν τ , π ν τ and K ν τ , Phys. Rev. Lett. 105 (2010) 051602 [arXiv:0912.0242] [INSPIRE].

    Article  ADS  Google Scholar 

  83. M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].

    Article  ADS  Google Scholar 

  84. O. Deschamps, S. Descotes-Genon, S. Monteil, V. Niess, S. T’Jampens and V. Tisserand, The Two Higgs Doublet of Type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].

    ADS  Google Scholar 

  85. CLEO collaboration, B. Eisenstein et al., Precision Measurement of B(D +μ + ν) and the Pseudoscalar Decay Constant f D +, Phys. Rev. D 78 (2008) 052003 [arXiv:0806.2112] [INSPIRE].

    ADS  Google Scholar 

  86. Belle collaboration, A. Matyja et al., Observation of B 0D ∗− τ + ν τ decay at Belle, Phys. Rev. Lett. 99 (2007) 191807 [arXiv:0706.4429] [INSPIRE].

    Article  ADS  Google Scholar 

  87. BaBar collaboration, B. Aubert et al., Measurement of the Semileptonic Decays \( \overline{B} \) \( \overline{\nu} \) τ and \( \overline{B} \)D τ \( \overline{\nu} \) τ , Phys. Rev. D 79 (2009) 092002 [arXiv:0902.2660] [INSPIRE].

    ADS  Google Scholar 

  88. BaBar collaboration, J. Lees et al., Evidence for an excess of \( \overline{B} \)D(∗) τ \( \overline{\nu} \) τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

    Article  ADS  Google Scholar 

  89. A. Crivellin, C. Greub and A. Kokulu, Explaining BDτ ν, BD*τ ν and Bτ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

    ADS  Google Scholar 

  90. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of bhadron and chadron Properties at the End of 2007, arXiv:0808.1297 [INSPIRE].

  91. G. de Divitiis, R. Petronzio and N. Tantalo, Quenched lattice calculation of semileptonic heavy-light meson form factors, JHEP 10 (2007) 062 [arXiv:0707.0587] [INSPIRE].

    Article  ADS  Google Scholar 

  92. M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to \( \overline{B} \)X s γ: Standard model and two Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [INSPIRE].

    Article  ADS  Google Scholar 

  93. P. Ciafaloni, A. Romanino and A. Strumia, Two loop QCD corrections to charged Higgs mediated bsγ decay, Nucl. Phys. B 524 (1998) 361 [hep-ph/9710312] [INSPIRE].

    Article  ADS  Google Scholar 

  94. G. Degrassi and P. Slavich, QCD Corrections in two-Higgs-doublet extensions of the Standard Model with Minimal Flavor Violation, Phys. Rev. D 81 (2010) 075001 [arXiv:1002.1071] [INSPIRE].

    ADS  Google Scholar 

  95. T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B} \)X s γ in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].

    Article  ADS  Google Scholar 

  96. CLEO collaboration, S. Chen et al., Branching fraction and photon energy spectrum for b, Phys. Rev. Lett. 87 (2001) 251807 [hep-ex/0108032] [INSPIRE].

    Article  ADS  Google Scholar 

  97. Belle collaboration, K. Abe et al., A Measurement of the branching fraction for the inclusive \( \overline{B} \)X s γ decays with BELLE, Phys. Lett. B 511 (2001) 151 [hep-ex/0103042] [INSPIRE].

    ADS  Google Scholar 

  98. Belle collaboration, A. Limosani et al., Measurement of Inclusive Radiative B-meson Decays with a Photon Energy Threshold of 1.7-GeV, Phys. Rev. Lett. 103 (2009) 241801 [arXiv:0907.1384] [INSPIRE].

    Article  ADS  Google Scholar 

  99. BaBar collaboration, J. Lees et al., Precision Measurement of the BX s γ Photon Energy Spectrum, Branching Fraction and Direct CP Asymmetry A CP (BX s+d γ), Phys. Rev. Lett. 109 (2012) 191801 [arXiv:1207.2690] [INSPIRE].

    Article  ADS  Google Scholar 

  100. BaBar collaboration, J. Lees et al., Exclusive Measurements of bsγ Transition Rate and Photon Energy Spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].

    ADS  Google Scholar 

  101. BaBar collaboration, B. Aubert et al., Measurement of the \( \overline{B} \)X s γ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].

    ADS  Google Scholar 

  102. Z.-j. Xiao and L. Guo, B 0\( \overline{B} \) 0 mixing and \( \overline{B} \)X s γ decay in the third type 2HDM: Effects of NLO QCD contributions, Phys. Rev. D 69 (2004) 014002 [hep-ph/0309103] [INSPIRE].

    ADS  Google Scholar 

  103. N. Cabibbo and L. Maiani, The Lifetime of Charmed Particles, Phys. Lett. B 79 (1978) 109 [INSPIRE].

    ADS  Google Scholar 

  104. Y. Nir, The Mass Ratio m c /m b in Semileptonic B Decays, Phys. Lett. B 221 (1989) 184 [INSPIRE].

    ADS  Google Scholar 

  105. A. Ali and C. Greub, Inclusive photon energy spectrum in rare B decays, Z. Phys. C 49 (1991) 431 [INSPIRE].

    Google Scholar 

  106. A. Ali and C. Greub, Photon energy spectrum inX s γ and comparison with data, Phys. Lett. B 361 (1995) 146 [hep-ph/9506374] [INSPIRE].

    ADS  Google Scholar 

  107. A. Ali and C. Greub, A Profile of the final states in \( \overline{B} \)X s γ and an estimate of the branching ratio BR (BK γ), Phys. Lett. B 259 (1991) 182 [INSPIRE].

    ADS  Google Scholar 

  108. N. Pott, Bremsstrahlung corrections to the decay b → sγ, Phys. Rev. D 54 (1996) 938 [hep-ph/9512252] [INSPIRE].

    ADS  Google Scholar 

  109. M. Trott and M.B. Wise, On theories of enhanced CP-violation in B s,d meson mixing, JHEP 11 (2010) 157 [arXiv:1009.2813] [INSPIRE].

    Article  ADS  Google Scholar 

  110. D. Bowser-Chao, K.-m. Cheung and W.-Y. Keung, Phase effect of a general two Higgs doublet model in b, Phys. Rev. D 59 (1999) 115006 [hep-ph/9811235] [INSPIRE].

    ADS  Google Scholar 

  111. J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the B 0\( \overline{B} \) 0 mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].

    Article  ADS  Google Scholar 

  112. H.E. Haber and H.E. Logan, Radiative corrections to the Zb \( \overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  113. H.E. Logan, Radiative corrections to the Zb \( \overline{b} \) vertex and constraints on extended Higgs sectors, hep-ph/9906332 [INSPIRE].

  114. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  115. LHCb collaboration, First Evidence for the Decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  116. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

    Article  ADS  Google Scholar 

  117. H.E. Logan and U. Nierste, B(s, d) → + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].

    Article  ADS  Google Scholar 

  118. C.-S. Huang, W. Liao, Q.-S. Yan and S.-H. Zhu, B s + in a general 2 HDM and MSSM, Phys. Rev. D 63 (2001) 114021 [Erratum ibid. D 64 (2001) 059902] [hep-ph/0006250] [INSPIRE].

    ADS  Google Scholar 

  119. A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, arXiv:1303.5877 [INSPIRE].

  120. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].

    Article  ADS  Google Scholar 

  121. A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].

    ADS  Google Scholar 

  122. Fermilab Lattice, MILC collaborations, A. Bazavov et al., B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].

    ADS  Google Scholar 

  123. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  124. G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    Article  ADS  Google Scholar 

  125. R.M. Barnett, R. Cruz, J.F. Gunion and B. Hubbard, Charged Higgs Bosons at the SSC, Phys. Rev. D 47 (1993) 1048 [INSPIRE].

    ADS  Google Scholar 

  126. LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209-GeV, hep-ex/0107031 [INSPIRE].

  127. ATLAS collaboration, ATLAS Sensitivity Prospects for Higgs Boson Production at the LHC Running at 7 TeV, ATL-PHYS-PUB-2010-009 (2010).

  128. S. Moretti and W.J. Stirling, Contributions of below threshold decays to MSSM Higgs branching ratios, Phys. Lett. B 347 (1995) 291 [Erratum ibid. B 366 (1996) 451] [hep-ph/9412209] [INSPIRE].

    ADS  Google Scholar 

  129. A. Djouadi, J. Kalinowski and P. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].

    Google Scholar 

  130. DELPHI collaboration, J. Abdallah et al., Search for charged Higgs bosons at LEP in general two Higgs doublet models, Eur. Phys. J. C 34 (2004) 399 [hep-ex/0404012] [INSPIRE].

    ADS  Google Scholar 

  131. OPAL collaboration, G. Abbiendi et al., Search for Charged Higgs Bosons in e + e Collisions at \( \sqrt{s}=189-209 \) GeV, Eur. Phys. J. C 72 (2012) 2076 [arXiv:0812.0267] [INSPIRE].

    ADS  Google Scholar 

  132. D. Toussaint, Renormalization effects from superheavy Higgs particles, Phys. Rev. D 18 (1978) 1626 [INSPIRE].

    ADS  Google Scholar 

  133. S. Bertolini, Quantum effects in a two Higgs doublet model of the electroweak interactions, Nucl. Phys. B 272 (1986) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  134. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  135. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  136. S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011) 303 [arXiv:1108.3297] [INSPIRE].

    ADS  Google Scholar 

  137. P.H. Chankowski, M. Krawczyk and J. Zochowski, Implications of the precision data for very light Higgs boson scenario in 2HDM(II), Eur. Phys. J. C 11 (1999) 661 [hep-ph/9905436] [INSPIRE].

    Article  ADS  Google Scholar 

  138. A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the Two-Higgs-Doublet-Model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

    ADS  Google Scholar 

  139. W. Grimus, L. Lavoura, O. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].

    Article  ADS  Google Scholar 

  140. CDF collaboration, Search for Light Higgs Boson from Top Quark Decays, CDF Note 10104 (2010).

  141. R. Dermisek and J.F. Gunion, Many Light Higgs Bosons in the NMSSM, Phys. Rev. D 79 (2009) 055014 [arXiv:0811.3537] [INSPIRE].

    ADS  Google Scholar 

  142. G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC Observing the Pseudo-scalar State of a Two-Higgs Doublet Model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  143. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  144. A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  145. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  146. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  147. J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  148. E. Gabrielli, B. Mele and M. Raidal, Has a Fermiophobic Higgs Boson been Detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    ADS  Google Scholar 

  149. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  150. C.S. Li and T.C. Yuan, QCD correction to charged Higgs decay of the top quark, Phys. Rev. D 42 (1990) 3088 [Erratum ibid. D 47 (1993) 2156] [INSPIRE].

    ADS  Google Scholar 

  151. A. Czarnecki and S. Davidson, QCD corrections to the charged Higgs decay of a heavy quark, Phys. Rev. D 48 (1993) 4183 [hep-ph/9301237] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hernández-Sánchez.

Additional information

ArXiv ePrint: 1212.6818

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Sánchez, J., Moretti, S., Noriega-Papaqui, R. et al. Off-diagonal terms in Yukawa textures of the Type-III 2-Higgs doublet model and light charged Higgs boson phenomenology. J. High Energ. Phys. 2013, 44 (2013). https://doi.org/10.1007/JHEP07(2013)044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)044

Keywords

Navigation