Skip to main content
Log in

Half-maximal supergravity in three dimensions: supergeometry, differential forms and algebraic structure

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The half-maximal supergravity theories in three dimensions, which have local SO(8) × SO(n) and rigid SO(8, n) symmetries, are discussed in a superspace setting starting from the superconformal theory. The on-shell theory is obtained by imposing further constraints; it is essentially a non-linear sigma model that induces a Poincaré supergeometry. The deformations of the geometry due to gauging are briefly discussed. The possible p-form field strengths are studied using supersymmetry and SO(8, n) symmetry. The set of such forms obeying consistent Bianchi identities constitutes a Lie super co-algebra while the demand that these identities admit solutions places a further constraint on the possible representations of SO(8, n) that the forms transform under which can be easily understood using superspace cohomology. The dual Lie superalgebra can then be identified as the positive sector of a Borcherds superalgebra that extends the Lie algebra of the duality group. In addition to the known p = 2, 3, 4 forms, which we construct explicitly, there are five-forms that can be non-zero in supergravity, while all forms with p > 5 vanish. It is shown that some six-forms can have non-trivial contributions at order α .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories, Nucl. Phys. B 228 (1983) 145 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Greitz and P. Howe, Maximal supergravity in three dimensions: supergeometry and differential forms, JHEP 07 (2011) 071 [arXiv:1103.2730] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Henry-Labordere, B. Julia and L. Paulot, Borcherds symmetries in M-theory, JHEP 04 (2002) 049 [hep-th/0203070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Henry-Labordere, B. Julia and L. Paulot, Real Borcherds superalgebras and M-theory, JHEP 04 (2003) 060 [hep-th/0212346] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Julia, Dualities in the classical supergravity limits: dualizations, dualities and a detour via (4k + 2)-dimensions, hep-th/9805083 [INSPIRE].

  7. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. B. de Wit, A. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].

    Article  ADS  Google Scholar 

  10. E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody spectrum of (half-)maximal supergravities, JHEP 02 (2008) 069 [arXiv:0711.2035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Nicolai and H. Samtleben, N = 8 matter coupled AdS 3 supergravities, Phys. Lett. B 514 (2001) 165 [hep-th/0106153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [INSPIRE].

    Article  ADS  Google Scholar 

  13. B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP 08 (2008) 015 [arXiv:0805.4767] [INSPIRE].

    Article  Google Scholar 

  14. J. Greitz and P. Howe, Maximal supergravity in D = 10: forms, Borcherds algebras and superspace cohomology, JHEP 08 (2011) 146 [arXiv:1103.5053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Slansky, An algebraic role for energy and number operators for multiparticle states, Nucl. Phys. B 389 (1993) 349 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. P.S. Howe, J. Izquierdo, G. Papadopoulos and P. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Howe and E. Sezgin, The supermembrane revisited, Class. Quant. Grav. 22 (2005) 2167 [hep-th/0412245] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Cederwall, U. Gran and B.E. Nilsson, D = 3, N = 8 conformal supergravity and the Dragon window, JHEP 09 (2011) 101 [arXiv:1103.4530] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. N. Dragon, Torsion and curvature in extended supergravity, Z. Phys. C 2 (1979) 29 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. M. Weidner, Gauged supergravities in various spacetime dimensions, Fortsch. Phys. 55 (2007) 843 [hep-th/0702084] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  25. P.S. Howe and H. Nicolai, Gauging N = 8 supergravity in superspace, Phys. Lett. B 109 (1982) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  26. E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 1, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].

    Article  ADS  Google Scholar 

  27. E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 2. Twisted selfduality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Iqbal, A. Neitzke and C. Vafa, A mysterious duality, Adv. Theor. Math. Phys. 5 (2002) 769 [hep-th/0111068] [INSPIRE].

    MathSciNet  Google Scholar 

  29. M. Henneaux, B.L. Julia and J. Levie, E 11 , Borcherds algebras and maximal supergravity, JHEP 04 (2012) 078 [arXiv:1007.5241] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Palmkvist, Tensor hierarchies, Borcherds algebras and E 11, JHEP 02 (2012) 066 [arXiv:1110.4892] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Palmkvist, Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras, arXiv:1203.5107 [INSPIRE].

  32. T. Nutma, SimpLiea simple program for Lie algebras webpage, http://code.google.com/p/simplie/.

  33. E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody spectrum of (half-)maximal supergravities, JHEP 02 (2008) 069 [arXiv:0711.2035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Damour, M. Henneaux and H. Nicolai, E 10 and asmall tension expansionof M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Brink and P.S. Howe, The N = 8 supergravity in superspace, Phys. Lett. B 88 (1979) 268 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. B. de Wit and H. Nicolai, The parallelizing S 7 torsion in gauged N = 8 supergravity, Nucl. Phys. B 231 (1984) 506 [INSPIRE].

    Article  ADS  Google Scholar 

  38. L. Bonora, P. Pasti and M. Tonin, Superspace formulation of 10D SUGRA+SYM theory à la Green-Schwarz, Phys. Lett. B 188 (1987) 335 [INSPIRE].

    ADS  Google Scholar 

  39. P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].

  40. P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059 [INSPIRE].

  42. N. Berkovits and P. Howe, The cohomology of superspace, pure spinors and invariant integrals, JHEP 06 (2008) 046 [arXiv:0803.3024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. F. Brandt, Supersymmetry algebra cohomology: II. Primitive elements in 2 and 3 dimensions, J. Math. Phys. 51 (2010) 112303 [arXiv:1004.2978] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Movshev, A. Schwarz and R. Xu, Homology of Lie algebra of supersymmetries and of super Poincaré Lie algebra, Nucl. Phys. B 854 (2012) 483 [arXiv:1106.0335] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Greitz.

Additional information

ArXiv ePrint: 1203.5585

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greitz, J., Howe, P.S. Half-maximal supergravity in three dimensions: supergeometry, differential forms and algebraic structure. J. High Energ. Phys. 2012, 177 (2012). https://doi.org/10.1007/JHEP06(2012)177

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)177

Keywords

Navigation