Skip to main content
Log in

Fabrication of Porous Ceramics by Direct Foaming

  • Review Papers
  • Published:
Interceram - International Ceramic Review

Abstract

Porous ceramics have been extensively studied during the last two decades because of their application potentials in various fields including thermal insulators, radome materials, gas or molten metal filters, catalytic supports and biomedical substitutes for bone. This paper gives a brief review on the recent developments of preparation of porous ceramics by direct foaming method, it shows that the direct foaming method is a more effective way for preparation of high performance porous ceramics with high porosity, high mechanical strength and an even pore size distribution compared with conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou, Z.G., Du, H.Y., Liu, J.C., Hao, R.H., Dong, X., Liu, M.X.: Fabrication and properties of mullite fiber matrix porous ceramics by a TBA-based gelcasting process. J. Eur. Ceram. Soc. 33 (2013) 717–725

    Article  CAS  Google Scholar 

  2. Manoj Kumar, B.V., Zhai, W., Eom, J.H., Kim, Y. W., Park, C.B.: Processing highly porous SiC ceramics using poly (ether-co-octene) and hollow microsphere templates. J. Mater. Sci. 46 (2011) 3664–3667

    Article  CAS  Google Scholar 

  3. Li, J.F., Lin, H., Lin, Li, J.B.: Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support. J. Eur. Ceram. Soc. 31 (2011) 825–831

    Article  CAS  Google Scholar 

  4. Messing, G.L., Stevenson, A.J.: Materials science: Toward pore-free ceramics. Science 322 (2008) 383–384

    Article  CAS  Google Scholar 

  5. Colombo, P.: Advanced processing methods are used to tailor the properties of porous ceramics. Science 322 (2008) 381–383

    Article  CAS  Google Scholar 

  6. Hu, X.J., Yu, J., Song, J., Wang, X.G., Huang, Y.: Toward low-cost Pd/ceramic composite membranes for hydrogen separation: A case study on reuse of the recycled porous Al2O3 substrates in membrane fabrication. Int. J. Hydrogen Energy 36 (2011) 15794–15802

    Article  CAS  Google Scholar 

  7. Fadli, A., Sopyan, I.: Porous ceramics with controllable properties prepared by protein foaming-consolidation method. J. Porous Mater. 18 (2011) 195–203

    Article  CAS  Google Scholar 

  8. Amaral-Labat, G., Zollfrank, C., Ortona, A., Pusterla, S., Pizzi, A., Fierro, V., Celzard, A.: Structure and oxidation resistance of micro-cellular Si-SiC foams derived from natural resins. Ceram. Int. 39 (2013) 1841–1851

    Article  CAS  Google Scholar 

  9. Zocca, A., Gomes, C.M., Bernardo, E., Müller, R., Günster, J., Colombo, P.: LAS glass-ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33 (2013) 1525–1533

    Article  CAS  Google Scholar 

  10. Ding, S., Zeng, Y.P., Jiang, D.: Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Mater. Lett. 61 (2007) 2277–2280

    Article  CAS  Google Scholar 

  11. Kocjan, A., Shen, Z.: Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities. J. Eur. Ceram. Soc. 33 (2013) 3165–3176

    Article  CAS  Google Scholar 

  12. Kalemtas, A., Topates, G., Özcoban, H., Mandal, H., Kara, F., Janssen, R.: Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering and starch addition. J. Eur. Ceram. Soc. 33 (2013) 1507–1515

    Article  CAS  Google Scholar 

  13. He, X., Su, B., Tang, Z., Zhao, B., Wang, X., Yang, G., Qiu, H., Zhang, H., Yang, J.: The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods. J. Porous Mater. 19 (2012) 761–766

    Article  CAS  Google Scholar 

  14. Chen, F., Yang, Y., Shen, Q., Zhang, L. M.: Macro/micro structure dependence of mechanical strength of low temperature sintered silicon carbide ceramic foams. Ceram. Int. 38 (2012) 5223–5229

    Article  CAS  Google Scholar 

  15. Akpinar, S., Altun, I.A., Onel, K.: Effects of SiC addition on the structure and properties of reticulated porous mullite ceramics. J. Eur. Ceram. Soc. 30 (2010) 2727–2734.

    Article  CAS  Google Scholar 

  16. Sarikaya, A., Dogan, F.: Effect of various pore formers on the microstructural development of tape-cast porous ceramics. Ceram. Int. 39 (2013) 403–413

    Article  CAS  Google Scholar 

  17. Liu, R.P., Wang, C.G.: Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J. Eur. Ceram. Soc. 33 (2013) 1859–1865

    Article  CAS  Google Scholar 

  18. Lee, S.J., Lee, J.M., Kim, Y.G., Yoon, S.D., Yun, J.W.: Thermal cycle development of PMMA pore former removal for honeycomb-type SOFC supports. Ceram. Int. 40 (2014) 4879–4887

    Article  CAS  Google Scholar 

  19. Zhou, J., Wang, C.A.: Porous yttria-stabilized zirconia ceramics fabricated by nonaqueous based gel-casting process with PMMA microsphere as poreforming agent. J. Am. C eram. Soc. 96 (2013) 266–271

    Article  CAS  Google Scholar 

  20. Zou, C.R., Zhang, C.R., Li, B., Wang, S.Q., Cao, F.: Microstructure and properties of porous silicon nitride ceramics prepared by gelcasting and gas pressure sintering. Mater. Des. 44 (2013) 114–118

    Article  CAS  Google Scholar 

  21. Wu, H.B., Yin, J., Liu, X.J., Huang Z.G., Lee S.H.: Aqueous gelcasting and pressureless sintering of zirconium diboride foams. Ceram. Int. 40 (2014) 6325–6330

    Article  CAS  Google Scholar 

  22. Tang, Y.F., Zhao, K., Hu, L., Wu, Z.X.: Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram. Int. 39 (2013) 9703–9707

    Article  CAS  Google Scholar 

  23. Preiss, A., Su, B., Collins, S., Simpson, D.: Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. J. Eur. Ceram. Soc. 32 (2012) 1575–1583

    Article  CAS  Google Scholar 

  24. Fielding, G., Bose, S.: SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9 (2013) 9137–9148

    Article  CAS  Google Scholar 

  25. Kim, Y.W., Kim, S.H., Xu, X., Choi, C.H., Park, C.B., Kim, H.D.: Fabrication of porous preceramic polymers using carbon dioxide. J. Mater. Sci. Lett. 21 (2002) 1667–1669

    Article  CAS  Google Scholar 

  26. Colombo, P., Griffoni, M., Modesti, M.: Ceramic foams from a preceramic polymer and polyurethanes: Preparation and morphological investigations. J. Sol-Gel Sci. Technol. 13 (1998) 195–199

    Article  CAS  Google Scholar 

  27. Colombo, P., Hellmann, J.R.: Ceramic foams from preceramic polymers. Mater. Res. Innovat. 6 (2002) 260–272

    Article  CAS  Google Scholar 

  28. Colombo, P., Modesti, M.: Silicon oxycarbide foams from a silicone preceramic polymer and polyurethane. J. Sol-Gel Sci. Technol. 14 (1999) 103–111

    Article  CAS  Google Scholar 

  29. Potoczek, M.: Gelcasting of alumina foams using agarose solutions. Ceram. Int. 34(2008) 661–667

    Article  CAS  Google Scholar 

  30. Mohanta, K., Kumar, A., Parkash, O., Kumar, D.: Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. J. Eur. Ceram. Soc. 2014. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.01.024

  31. Tulliani, J.M., Lombardi, M., Palmero, P., Fornabaio, M., Gibson, L.J.: Development and mechanical characterization of novel ceramic foams fabricated by gelcasting. J. Eur. Ceram. Soc. 33 (2013) 1567–1576

    Article  CAS  Google Scholar 

  32. Fadli, A., Sopyan, I.: Porous ceramics with controllable properties prepared by protein foaming-consolidation method. J. Porous Mater. 18 (2011) 195–203

    Article  CAS  Google Scholar 

  33. Sopyan, I., Fadli, A., Mel, M.: Porous aluminahydroxyapatite composites through proteinfoaming-consolidation method. J. Mech. Behav. Biomed. 8 (2012) 86–98

    Article  CAS  Google Scholar 

  34. Yin, L. Y., Zhou, X. G., Yu, J. S., Wang, H. L., Zhao, S., Luo, Z., Yang, B.: New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method. J. Eur. Ceram. Soc. 33 (2013) 1387–1392

    Article  CAS  Google Scholar 

  35. Yin, L. Y., Zhou, X. G., Yu, J. S., Wang, H., Liu, Z: Protein foaming method to prepare Si3N4 foams by using a mixture of egg white protein and whey protein isolate. Ceram. Int. http://dx.doi.org/10.1016/j.ceramint.2014.03.043

  36. Xie, Z., Chen, Y., Huang, Y.: A novel casting forming for ceramics by gelatin and enzyme catalysis. J. Eur. Ceram. Soc. 20 (2000) 253–257

    Article  CAS  Google Scholar 

  37. Gregorová, E., Pabst, W.: Process control and optimized preparation of porous alumina ceramics by starch consolidation casting. J. Eur. Ceram. Soc. 31(2011) 2073–2081

    Article  CAS  Google Scholar 

  38. Živcová, Z., Gregorová, E., Pabst, W.: Low- and high-temperature processes and mechanisms in the preparation of porous ceramics via starch consolidation casting. Starch-Stärke 62 (2010) 3–10

    Article  CAS  Google Scholar 

  39. Gong, L.L., Wang, Y.H., Cheng, X.D., Zhang, R.F., Zhang, H.P.: Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. J. Porous Mater. 21 (2014) 15–21

    Article  CAS  Google Scholar 

  40. Fujiu, Messing, T.G.L., Huebner W.: Processing and properties of cellular silica synthesized by foaming sol gels. J. Am. Ceram. Soc. 73 (1990) 85–90

    Article  CAS  Google Scholar 

  41. Destribats, M., Faure, B., Birot, M., Babot, O., Schmitt, V., Backov, R.: Tailored silica macrocellular foams: Combining limited coalescence-based pickering emulsion and sol-gel process. Adv. Funct. Mater. 22 (2012) 2642–2654

    Article  CAS  Google Scholar 

  42. Alves-Rosa, M.A., Martins, L., Pulcinelli, S.H. Santilli, C.V.: Design of microstructure of zirconia foams from the emulsion template properties. Soft Matter 9 (2013) 550–558

    Article  CAS  Google Scholar 

  43. Beozzo, C.C., Alves-Rosa, M.A., Pulcinelli, S.H., Santilli C.V.: Liquid foam templates associated with the sol-gel process for production of zirconia ceramic foams. Materials 6 (2013) 1967–1979

    Article  CAS  Google Scholar 

  44. Rosa, A., Santos, E.P., Santilli, C.V., Pulcinelli, S.H.: Zirconia foams prepared by integration of the sol-gel method and dual soft template techniques. J. Non-Cryst. Solids 354 (2008) 4786–4789

    Article  CAS  Google Scholar 

  45. Lins, R.F., Alves-Rosa, M.A., Pulcinelli, S.H., Santilli, C.V.: Formation of TiO2 ceramic foams from the integration of the sol-gel method with surfactants assembly and emulsion. J. Sol-Gel Sci. Technol. 63 (2012) 224–229

    Article  CAS  Google Scholar 

  46. Guo, X., Nakanishi, K., Kanamori, K., Zhu, Y., Yang, H.: Preparation of macroporous cordierite monoliths via the sol-gel process accompanied by phase separation. J. Eur. Ceram. Soc. 34 (2014) 817–823

    Article  CAS  Google Scholar 

  47. Binner, J.G.P.: Production and properties of low density engineering ceramic foams. Br. Ceram. Trans. 96 (1997) 247–249

    CAS  Google Scholar 

  48. Sepulveda, P.: Gelcasting foams for porous ceramics. Am. Ceram. Soc. Bull. 76 (1997) 61–65

    CAS  Google Scholar 

  49. Sepulveda, P., Binner, J.G.P.: Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 19 (1999) 2059–2066

    Article  CAS  Google Scholar 

  50. Sepulveda, P., Binner, J.G.P., Rogero, S.O., Higa, O.Z., Bressiani, J.C.: Production of porous hydroxyapatite by the gelcasting of foams and cytotoxic evaluation. J. Biomed. Mater. Res. 50 (2000) 27–34

    Article  CAS  Google Scholar 

  51. Sepulveda, P., Ortega, F.S., Innocentini, M.D.M., Pandolfelli, V.C.: Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J. Am. Ceram. Soc. 83 (2000) 3021–3024

    Article  CAS  Google Scholar 

  52. Omatete, O.O., Janney, M.A., Strehlow, R.A.: Gelcasting — a new ceramic forming process. J. Am. Ceram. Soc. Bull. 70 (1991) 1641–1649

    CAS  Google Scholar 

  53. Young, A.C., Omatete, O.O., Janney, M.A., Menchhofer, P.A: Gelcasting of alumina. J. Am. Ceram. Soc. 74 (1991) 612–618

    Article  CAS  Google Scholar 

  54. Sepulveda, P., Binner, J.G.P.: Evalution of the in situ polymerization kinetics for the gelcasting of ceramic foams. Chem. Mater. 13 (2001) 3882–3887

    Article  CAS  Google Scholar 

  55. Mao, X.J., Shimai, S., Wang, S.W.: Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28 (2008) 217–222

    Article  CAS  Google Scholar 

  56. Kim, H., Lee, S., Han Y., Park, J.K.: Control of pore size in ceramic foams: Influence of surfactant concentration. Mater. Chem. Phys. 113 (2009) 441–444

    Article  CAS  Google Scholar 

  57. Yu, J., Yang, J., Zeng, Q., Huang, Y.: Effect of carboxymethyl cellulose addition on the properties of Si3N4 ceramic foams. Ceram. Int. 39 (2013) 2775–2779

    Article  CAS  Google Scholar 

  58. Wu, H., Yin, J., Liu, X., Huang, Z., Lee, S. H.: Aqueous gelcasting and pressureless sintering of zirconium diboride foams. Ceram. Int. 40 (2014) 6325–6330

    Article  CAS  Google Scholar 

  59. Yang, Y., Shimai, S., Sun, Y., Dong, M., Kamiya, H., Wang, S.W.: Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming. J. Mater. Res. 28 (2013) 2012–2016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Wang, J., Du, S. et al. Fabrication of Porous Ceramics by Direct Foaming. Interceram. - Int. Ceram. Rev. 63, 104–108 (2014). https://doi.org/10.1007/BF03401041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401041

Keywords

Navigation