Skip to main content
Log in

Erythrocyte fatty acid composition and insulin sensitivity in daughters of Type 2 diabetic patients and women with no family history of diabetes

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: There is evidence that the impact of environmental factors on insulin sensitivity is modified by the presence of family history of diabetes. Aim: To compare the association between the erythrocyte phospholipid fatty acid composition (a biomarker of dietary fatty acids) and insulin sensitivity in daughters of Type 2 diabetic patients with the corresponding association in women without family history of diabetes. Material/subjects and methods: Eighteen offspring of Type 2 diabetic patients [age 30±6.5 yr; body mass index (BMI) 22.2±2.5 kg/m2; body fat 31.8±5.1%] and 18 matched women (age 30.1±6.8 yr; BMI 22.2±1.8 kg/m2; body fat 32.2±6.0%) participated in the study. Results: Insulin Sensitivity Index (ISI)-Matsuda tended to be lower (p=0.06) in the Offspring than the control group. Weight proportions of erythrocyte phospholipid saturated (SFA), polyunsaturated (PUFA), and monounsaturated fatty acids (MUFA) were similar between the two groups. In the offspring, erythrocyte total SFA were negatively correlated with ISI-Matsuda [r=−0.47, p<0.05), ISI(gly)-Belfiore (r=−0.52, p<0.05) and ISI(ffa)-Belfiore (r=−0.53, p<0.05)], whereas total PUFA were positively correlated with insulin sensitivity [ISI-Matsuda, r=0.46, p<0.05; ISI(gly)-Belfiore, r=0.53, p<0.05; ISI(ffa)-Belfiore, r=0.54, p<0.05]. No significant correlations were observed in the control group. Conclusions: The associations between erythrocyte fatty acid composition and insulin sensitivity are distinct between daughters of Type 2 diabetic patients and women without family history of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27: 1047–53.

    Article  PubMed  Google Scholar 

  2. Hilding A, Eriksson AK, Agardh EE, et al. The impact of family history of diabetes and lifestyle factors on abnormal glucose regulation in middle-aged Swedish men and women. Diabetologia 2006, 49: 2589–98.

    Article  CAS  PubMed  Google Scholar 

  3. Poulsen P, Vaag A, Kyvik K, Beck-Nielsen H. Genetic versus environmental aetiology of the metabolic syndrome among male and female twins. Diabetologia 2001, 44: 537–43.

    Article  CAS  PubMed  Google Scholar 

  4. Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994, 43: 1066–84.

    CAS  Google Scholar 

  5. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 1990, 113: 909–15.

    Article  CAS  PubMed  Google Scholar 

  6. Higgins S, Gill JM, Janilionyte R, Caslake MJ, Malkova D. Physical activity, dietary intake and metabolic risk factors in non-diabetic daughters of patients with type II diabetes. Prev Med 2005, 40: 145–51.

    Article  PubMed  Google Scholar 

  7. Kriketos AD, Greenfield JR, Peake PW, et al. Inflammation, insulin resistance, and adiposity: a study of first-degree relatives of type 2 diabetic subjects. Diabetes Care 2004, 27: 2033–40.

    Article  CAS  PubMed  Google Scholar 

  8. Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes 1997, 46: 1001–9.

    Article  CAS  PubMed  Google Scholar 

  9. Maron DJ, Fair JM, Haskell WL. Saturated fat intake and insulin resistance in men with coronary artery disease. The Stanford Coronary Risk Intervention Project Investigators and Staff. Circulation 1991, 84: 2020–7.

    CAS  Google Scholar 

  10. Marshall JA, Bessesen DH, Hamman RF. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 1997, 40: 430–8.

    Article  CAS  PubMed  Google Scholar 

  11. Parker DR, Weiss ST, Troisi R, Cassano PA, Vokonas PS, Landsberg L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: the Normative Aging Study. Am J Clin Nutr 1993, 58: 129–36.

    CAS  PubMed  Google Scholar 

  12. Mayer-Davis EJ, Monaco JH, Hoen HM, et al. Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). The Am J Clin Nutr 1997, 65: 79–87.

    CAS  Google Scholar 

  13. Mayer EJ, Newman B, Quesenberry CP Jr, Selby JV. Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care 1993, 16: 1459–69.

    Article  CAS  PubMed  Google Scholar 

  14. Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 2008, 47: 348–80.

    Article  CAS  PubMed  Google Scholar 

  15. Sun Q, Ma J, Campos H, Hankinson SE, Hu FB. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr 2007, 86: 74–81.

    CAS  PubMed  Google Scholar 

  16. Kabagambe EK, Tsai MY, Hopkins PN, et al. Erythrocyte fatty acid composition and the metabolic syndrome: a National Heart, Lung, and Blood Institute GOLDN study. Clin Chem 2008, 54: 154–62.

    Article  CAS  PubMed  Google Scholar 

  17. Jensen MD, Kanaley JA, Reed JE, Sheedy PF. Measurement of abdominal and visceral fat with computed tomography and dual-energy x-ray absorptiometry. Am J Clin Nutr 1995, 61: 274–8.

    CAS  PubMed  Google Scholar 

  18. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000, 32: S498–504.

    Article  CAS  PubMed  Google Scholar 

  19. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957, 226: 497–509.

    CAS  PubMed  Google Scholar 

  20. Kaluzny MA, Duncan LA, Merritt MV, Epps DE. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lip Res 1985, 26: 135–40.

    CAS  Google Scholar 

  21. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22: 1462–70.

    Article  CAS  PubMed  Google Scholar 

  22. Belfiore F, Iannello S, Camuto M, Fagone S, Cavaleri A. Insulin sensitivity of blood glucose versus insulin sensitivity of blood free fatty acids in normal, obese, and obese-diabetic subjects. Metabolism 2001, 50: 573–82.

    Article  CAS  PubMed  Google Scholar 

  23. Lovejoy JC, Champagne CM, Smith SR, et al. Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 2001, 50: 86–92.

    Article  CAS  PubMed  Google Scholar 

  24. Pelikánová T, Kazdová L, Chvojková S, Base J. Serum phospholipid fatty acid composition and insulin action in type 2 diabetic patients. Metabolism 2001, 50: 1472–8.

    Article  PubMed  Google Scholar 

  25. Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 1994, 37: 1044–50.

    Article  CAS  PubMed  Google Scholar 

  26. Hodson L, McQuaid SE, Karpe F, Frayn KN, Fielding BA. Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate. Am J Physiol 2009, 296: E64–71.

    CAS  Google Scholar 

  27. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med 1993, 328: 238–44.

    Article  CAS  PubMed  Google Scholar 

  28. Haugaard SB, Madsbad S, Hoy CE, Vaag A. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. Implications for insulin sensitivity. Clin Endocrinol (Oxf) 2006, 64: 169–78.

    Article  CAS  Google Scholar 

  29. Risérus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009, 48: 44–51.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ahn CW, Song YD, Nam JH, et al. Insulin sensitivity in physically fit and unfit children of parents with Type 2 diabetes. Diabet Med 2004, 21: 59–63.

    Article  CAS  PubMed  Google Scholar 

  31. Barwell ND, Malkova D, Moran CN, Cleland SJ, Packard CJ, Zammit VA, Gill JM. Exercise training has greater effects on insulin sensitivity in daughters of patients with type 2 diabetes than in women with no family history of diabetes. Diabetologia 2008, 51: 1912–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Belfiore F, Iannello S, Volpicelli G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose, and FFA levels. Mol Genet Metab 1998, 63: 134–41.

    Article  CAS  PubMed  Google Scholar 

  33. Mohlke KL, Boehnke M, Abecasis GR. Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum Mol Genet 2008, 17: R102–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447: 661–78.

    Article  Google Scholar 

  35. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genetics 1998, 20: 284–7.

    Article  CAS  PubMed  Google Scholar 

  36. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316: 1341–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20: 649–88.

    CAS  PubMed  Google Scholar 

  38. Luan J, Browne PO, Harding AH, et al. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes 2001, 50: 686–9.

    Article  CAS  PubMed  Google Scholar 

  39. Bendlová B, Vejrazková D, Vcelák J, et al. PPARgamma2 Pro12Ala polymorphism in relation to free fatty acids concentration and composition in lean healthy Czech individuals with and without family history of diabetes type 2. Physiol Res 2008, 57 (Suppl 1): S77–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Koutsari PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntali, G., Koutsari, C., Karakike, K. et al. Erythrocyte fatty acid composition and insulin sensitivity in daughters of Type 2 diabetic patients and women with no family history of diabetes. J Endocrinol Invest 33, 306–312 (2010). https://doi.org/10.1007/BF03346591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346591

Keywords

Navigation