Skip to main content
Log in

Cross inoculation studies: Response of Vigna mungo to inoculation with rhizobia from tree legumes growing under arid Environment

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Cross-inoculation experiments were conducted in the greenhouse to test the rhizobia isolated from nodules of seven tree legumes for their effectiveness in Vigna mungo plants. The tree legumes included Albizia lebbeck, Dalbergia sissoo, Leucaena leucocephala, Pithecellobium dulce, Prosopis cineraria, Prosopis glandulosa and Prosopis juliflora, all growing under arid environment. Rhizobia from these legumes formed nodules on the roots of Vigna mungo except isolates from Albizia lebbeck. Dry weight and nitrogen contents of Vigna mungo plants increased significantly (P<0.05) in response to cross inoculation as compared to uninoculated control. Rhizobia from Leucaena leucocephala and Prosopis glandulosa showed significant increase in dry weight (P<0.05) and nitrogen contents (P<0.05) than other inoculated treatments. The natural rhizobia of wild tree legumes growing under arid environment show higher tolerance to prevailing adverse conditions like salt stress, elevated temperatures and drought. These rhizobia may be used to inoculate wild as well as crop legumes cultivated in reclaimed desert lands. These rhizobia may have specific traits that can be transferred to other rhizobia through genetic engineering tools. The cross infection of agriculturally important legumes with isolates from wild legumes may prove a useful means of increasing nitrogen contents within these plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarger, N., (2001). Rhizobia in the field. Adv. Agron., 73, 109–168.

    Article  CAS  Google Scholar 

  • Aryal, U. K.; Hossain, M. K.; Mridha, M. A. U.; Xu, H. L.; Umemura, H., (1999). Effect of Rhizobium inoculation on growth, nodulation and nitrogenase activity of some tree species. J. Plant Nutr., 22, 1049–1059.

    Article  CAS  Google Scholar 

  • Basak, M. K.; Goyal, S. K., (1980). Studies on the biology of tree legumes-Rhizobium symbiosis: Nodulation pattern and cross inoculation trials with the tree legumes and cultivated legumes. Ann. Arid Zone, 9, 427–431.

    Google Scholar 

  • Dahiya, J. S.; Khurana, A. L., (1981). Chillum Jar, a better technique for screening of rhizobia under summer condition. Plant and Soil, 63, 299–302.

    Article  Google Scholar 

  • Dommergues, Y. R.; Diem, H. G.; Gauthier, D. L.; Dreyfus, B. L.; Cornet, F., (1984). Nitrogen-fixing trees in the tropics: Potentials and limitations, In: Advances in nitrogen fixation research, C. Veeger and W. E. Newton (Ed.), Martinus Nijhoff/Dr. W. Junk Publishers, Wageningen, The Netherlands.

    Google Scholar 

  • Duhoux, E.; Dommergues, Y. R., (1985). The use of nitrogen-fixing trees in forest and soil restoration in the tropics: In: Biological Nitrogen Fixation in Africa. H. Sali and S.O. Keya, (Eds.), Matianum Press Consultants, Nairobi.

    Google Scholar 

  • Gour, Y. D., (1993). Microbiology, physiology and agronomy of nitrogen fixation: Legume-Rhizobium symbiosis. Proc. Indian Nat. Sci. Acad., B., 59, 333–358.

    Google Scholar 

  • Herrera, A. M.; Bedmar, E. J.; Olivars, J., (1985). Host specificity of rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Sci., 42, 177–182.

    Article  CAS  Google Scholar 

  • Hernandez, B. S.; Focht, D. D., (1984). Invalidity of the concept of slow growth and alkali production in cowpea rhizobia. Appl. Environ. Microbiol., 48, 206–210.

    CAS  Google Scholar 

  • Iqbal, R.; Mahmood, A., (1992). Response of Leucaena leucocephala to inoculation with rhizobia from tropical legumes. Pak. J. Bot., 24, 153–156.

    Google Scholar 

  • Javid, Z.; Fisher, R., (1989). Dinitrogen fixation (C2H2 reduction) by Dalbergia sissoo and Leucaena leucocephala with native rhizobial strains. Arid Soil Res. Rehab., 34, 385–390.

    Article  Google Scholar 

  • Lalani Wijesundara, T. I.; Van Holm, L. H. J.; Kulasooriya, S. A., (2000). Rhizobiology and nitrogen fixation of some tree legumes native to Sri Lanka. Biol. Fertil. Soils, 30, 535–543.

    Article  Google Scholar 

  • Moerira, F. M. S.; Gillis, M.; Port, B.; Kerstens, K.; Franco, A. A., (1993). Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol., 16, 135–146.

    Article  Google Scholar 

  • Moerira, F. M. S.; Hauska, K.; Young, J. P. W., (1998). Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol. Ecol., 7, 889–895.

    Article  Google Scholar 

  • Nelson, D. W.; Sommers, L. E., (1980). Determination of total nitrogen in plant material. Agron. J., 65, 109–112.

    Article  Google Scholar 

  • Padmanabhan, S.; Hirtz, R. D.; Broughton, W. J., (1990). Rhizobia in tropical legumes. Cultural characteristics of Bradyrhizobium and Rhizobium species. Soil Biol. Biochem., 22, 23–28.

    Article  Google Scholar 

  • Somasegaran, P.; Hoben, H. J., (1994). Handbook of Rhizobia: Methods in Legume Rhizobium Technology. Springer-Verlag, New York.

    Book  Google Scholar 

  • Trinick, M. J., (1980). Relationships amongst the fast-growing Rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacterial., 49, 39–53.

    Article  Google Scholar 

  • Turk, D.; Keyser, H. H., (1992). Rhizobia that nodulate tree legumes: Specificity of the host for nodulation and effectiveness. Can. J. Microbiol., 38, 451–460.

    Article  Google Scholar 

  • Vessey, J. K.; Pawlowski, K.; Bergman, B., (2004). Root-based N2-fixing symbiosis: Legumes, actinorhizal plants, Parasponia sp. and cycads. Plant and Soil. 266, 205–230.

    Article  CAS  Google Scholar 

  • Wange, S. S., (1989). Response of groundnut (Arachis hypogaea L.) to inoculation with strains isolated from wild arboreal legumes. J. Appl. Microbiol. Biotech., 5, 135–141.

    Google Scholar 

  • Zahran, H. H., (2001). Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotech., 91, 143–153.

    Article  CAS  Google Scholar 

  • Zahran, H. H.; Ahmad, M. S.; Abdel-Fatteh, M.; Zaki, A. Y., (1999). Phenotypic characteristics, cross nodulation and nitrogen fixation of root nodule bacteria isolated from wild leguminous plants in Egypt. Proc. Int. Symp. Biol. Nit. Fix. and Crop Prod., 77–90.

  • Zhang, X.; Harper, R.; Karisto, M.; Lindstrom, K., (1991). Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Systm. Bacteriol., 41, 104–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Athar M.Sc., M.Phil., Ph.D., D.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, A., Athar, M. Cross inoculation studies: Response of Vigna mungo to inoculation with rhizobia from tree legumes growing under arid Environment. Int. J. Environ. Sci. Technol. 5, 135–139 (2008). https://doi.org/10.1007/BF03326006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326006

Keywords

Navigation