Skip to main content
Log in

Immunogenicity of Pulmonary Surfactant Preparations

Implications for Therapy of Respiratory Distress Syndrome

  • Review Article
  • Disease Treatment Review
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The increasing use of natural and synthetic surfactants to treat neonatal respiratory distress syndrome (RDS), and the likely extension of their use to other conditions, demands an understanding of the potential consequences of surfactant therapy. In particular, the ability of the body to produce antibodies against autologous or administered surfactants carries important long term implications that should be considered in planning treatment.

The proteins of natural surfactants and the phospholipids of natural and synthetic surfactants are both antigenic. Administered surfactant is immunogenic as administered, i.e. via the intratracheal route of instillation. Antibodies against surfactant constituents can inactivate surfactant in vitro and in vivo. The work of a number of groups suggests that at least some infants with neonatal RDS produce antibodies against surfactant constituents, although the role of these antibodies in the pathogenesis of RDS or its complications is still unclear. In addition, the presence of antibodies against surfactant might lead to future immunologically mediated damage. Circulating antibodies may inactivate surfactant following a primary lung injury however caused, and thus exacerbate the respiratory embarrassment caused by the primary insult.

Therefore, until more definitive data are available it is wise to assume that surfactant therapy is not without potential complications. One must safeguard against overconfident or indiscriminate use of surfactants. Exogenous surfactant therapy is effective in reducing the mortality of neonatal RDS; its use should be extended to other illnesses only after careful and controlled clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 1959; 97: 517–23

    CAS  Google Scholar 

  2. Notter RH, Shapiro DL, Ohning B, et al. Biophysical activity of synthetic phospholipids combined with purified lung surfactant 6000 dalton apoprotein. Chem Phys Lipids 1987; 44: 1–17

    Article  PubMed  CAS  Google Scholar 

  3. Possmayer F. A proposed nomenclature for pulmonary surfactant-associated proteins. AmRev Respir Dis 1988; 138: 990–8

    Article  CAS  Google Scholar 

  4. Cockshutt AM, Weitz J, Possmayer F. Pulmonary surfactant-associated protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry 1990; 29: 8424–9

    Article  PubMed  CAS  Google Scholar 

  5. Nogee LM, De Mello D, Dehner LP, et al. Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med 1993; 328: 406–10

    Article  PubMed  CAS  Google Scholar 

  6. Crouch E, Parghi D, Kuan SF, et al. Surfactant protein D: subcellular localization in nonciliated bronchiolar epithelial cells. Am J Physiol 1992; 263: L60–6

    PubMed  CAS  Google Scholar 

  7. Taneva S, Keough KMW. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface. I Monolayers of pulmonary surfactant protein SP-B and phospholipids. Biophys J 1994; 66: 1137–48

    Article  PubMed  CAS  Google Scholar 

  8. Taneva S, Keough KMW. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface. II. Monolayers of pulmonary surfactant protein SP-C and phospholipids. Biophys J 1994; 66: 1149–57

    Article  PubMed  CAS  Google Scholar 

  9. Taneva S, Keough KMW. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface. III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Biophys J 1994; 66: 1158–66

    Article  PubMed  CAS  Google Scholar 

  10. Strayer DS, Hallman M, Merritt TA. Immunogenicity of surfactant. I. Human alveolar surfactant. Clin Exp Immunol 1991; 83: 35–40

    Article  PubMed  CAS  Google Scholar 

  11. Strayer DS, Hallman M, Merritt TA. Immunogenicity of surfactant. II Porcine and bovine surfactants. Clin Exp Immunol 1991; 83: 41–46

    Article  PubMed  CAS  Google Scholar 

  12. Strayer DS, Merritt TA, Makunike C, et al. Antigenicity of low molecular weight surfactant species. Am J Pathol 1989; 134: 723–32

    PubMed  CAS  Google Scholar 

  13. Rott IM, Donaich D. Gastric autoimmunity. In: Miescher PA, Muller-Eberhard HJ, editors. Textbook of Immunopathology. New York: Grune & Stratton, 1976: 737–49

    Google Scholar 

  14. Thivolet J, Beyvin AJ. Recherches par immunofluorescence d’autoahticorps sérique vis-à-vis des constituents de l’épiderme chez les brulés. Experientia 1968; 24: 945–6

    Article  PubMed  CAS  Google Scholar 

  15. Shahani SK, Hattikudor NS. Immunological consequences of vasectomy. Arch Androl 1981; 7: 193–9

    Article  PubMed  CAS  Google Scholar 

  16. Boehme MW, Kataaha PK, Holborow EL. Autoantibodies to intermediate filaments in sera of patients with Schistosoma mansoni infection. Clin Exp Immunol 1989; 77: 230–3

    PubMed  CAS  Google Scholar 

  17. Ziegler AG, Herskowitz RD, Jackson RA, et al. Predicting type I diabetes. Diabetes Care 1990; 13: 762–5

    Article  PubMed  CAS  Google Scholar 

  18. McEvoy RC, Witt ME, Ginsberg-Fellner F, et al. Anti-insulin antibodies in children with type I diabetes mellitus: genetic regulation of production and presence at diagnosis before insulin replacement. Diabetes 1986; 35: 634–41

    Article  PubMed  CAS  Google Scholar 

  19. Strayer DS, Vitetta ES, Kohler H. Anti-receptor antibody I. Isolation and characterization of the immunoglobulin receptor for phosphorylcholine. J Immunol 1975; 114: 722–7

    PubMed  CAS  Google Scholar 

  20. Sinisi L, Palma V, Mansi D. Antiphospholipid antibodies in young adults with cerebrovascular ischemic disease. Acta Neurol 1992; 14: 381–6

    CAS  Google Scholar 

  21. Bick RL, Baker WF. Anticardiolipin antibodies and thrombosis. Hematol Oncol Clin North Am 1992; 6: 1287–99

    PubMed  CAS  Google Scholar 

  22. Bartmann P, Bamberger U, Pohlandt F, et al. Immunogenicity and immunomodulatory activity of bovine surfactant (SF-RI 1). Acta Paediatr Scand 1992; 81: 383–8

    Article  CAS  Google Scholar 

  23. Settmacher U, Volk HD, Jahn S, et al. Polyclonal Stimulation of human B lymphocytes derived from fetal liver and spleen cells at different stages of ontogeny. Immunol Lett 1990; 26: 159–63

    Article  PubMed  CAS  Google Scholar 

  24. Van Es JH, Raaphorst FM, van Tol MJ, et al. Expression pattern of the most JH-proximal human VH gene segment (VH6) in the B cell and antibody repertoire suggests a role of VH6-encoded IgM antibodies in early ontogeny. J Immunol 1993; 150: 161–8

    PubMed  Google Scholar 

  25. Campana D, Janossy G, Coustan-Smith E, et al. The expression of T cell receptor-associated proteins during T cell ontogeny in man. J Immunol 1989; 142: 57–66

    PubMed  CAS  Google Scholar 

  26. Sell S. Immunology, Immunopathology and Immunity. New York: Elsevier, 1987

    Google Scholar 

  27. Strayer DS, Merritt TA, Lwebuga-Mukasa J, et al. Surfactant-anti-surfactant immune complexes in neonatal respiratory distress syndrome. Am J Pathol 1986; 122: 353–62

    PubMed  CAS  Google Scholar 

  28. Germuth EG Jr. A comparative histologic and immunologic study in rabbits of induced hypersensitivity of the serum sickness type. J Exp Med 1953; 97: 257–82

    Article  PubMed  Google Scholar 

  29. Whitsett JA, Hull WM, Luse S. Failure to detect surfactant protein-specific antibodies in sera of premature infants treated with Survanta, a modified bovine surfactant. Pediatrics 1991; 87: 505–10

    PubMed  CAS  Google Scholar 

  30. Chida S, Phelps DS, Soll RF, et al. Surfactant proteins and anti-surfactant antibodies in sera from infants with respiratory distress syndrome with and without surfactant treatment. Pediatrics 1991; 88: 84–9

    PubMed  CAS  Google Scholar 

  31. Robertson B, Kobayashi T, Ganzuka M, et al. Experimental neonatal respiratory failure induced by monoclonal antibodies to the hydrophobic surfactant-associated protein SP-B. Pediatr Res 1991; 30: 239–43

    Article  PubMed  CAS  Google Scholar 

  32. Cummings JJ, Holm BA, Hudak ML, et al. A controlled clinical comparison of four different surfactant preparations in surfactant-deficient preterm lambs. Am Rev Respir Dis 1992; 145: 999–1004

    Article  PubMed  CAS  Google Scholar 

  33. Rider EA, Jobe AH, Ikegami M, et al. Different ventilation strategies alter surfactant in preterm rabbits. J Appl Physiol 1992; 73: 2089–96

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strayer, D.S. Immunogenicity of Pulmonary Surfactant Preparations. Clin. Immunother. 1, 441–448 (1994). https://doi.org/10.1007/BF03259036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259036

Keywords

Navigation