Skip to main content
Log in

Abstract

This survey is an introduction to some of the methods, techniques and concepts from algebraic topology and related areas (homotopy theory, shape theory) which can be fruitfully applied to study problems concerning continuous dynamical systems. To this end two instances which exemplify the interaction between topology and dynamics are considered, namely, Conley’s index theory and the study of some properties of certain attractors.

Resumen

Este artículo panorámico constituye una introducción a algunos de los métodos, técnicas y conceptos que, desde la topología algebraica y otras áreas afines (teoría de homotopía, teoría de la forma), permiten abordar problemas que se plantean en el marco de los sistemas dinámicos continuos. Para ello se presentan dos situaciones que ejemplifican esta interacción entre topología y dinámica, como son la construcción del índice de Conley y el estudio de algunas propiedades de ciertos atractores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts, J. M., (1988). The structure of orbits in dynamical systems,Fund. Math.,129, 39–57.

    MATH  MathSciNet  Google Scholar 

  2. Athanassopoulos, K., (2003). Explosions near isolated unstable attractors,Pacific J. Math.,210, 2, 201–214.

    Article  MATH  MathSciNet  Google Scholar 

  3. Athanassopoulos, K., (2006). Remarks on the region of attraction of an isolated invariant set,Colloq. Math.,104, 157–167.

    Article  MATH  MathSciNet  Google Scholar 

  4. Auslander, J. and Bhatia, N. P. and Seibert, P., (1964). Attractors in dynamical systems,Bol. Soc. Mat. Mexicana (2),9, 55–66.

    MATH  MathSciNet  Google Scholar 

  5. Beck, A., (1958).On invariant sets, Ann. of Math.,67, 1, 99–103.

    Article  MathSciNet  Google Scholar 

  6. Bertolim, M. A. and Mello, M. P. and de Rezende, K. A., (2005). Poincaré-Hopf inequalities and Morse inequalities for Lyapunov graphs,Ergodic Theory Dynam. Systems,25, 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertolim, M. A. and de Rezende, K. A. and Neto, O. M. and Vago, G. M., (2006). Isolating blocks for Morse flows,Geom. Dedicata,121, 19–41.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhatia, N. P. and Szegö, G. P., (1970).Stability theory of Dynamical Systems, Springer-Verlag.

  9. Bogatyĭ, S. A. and Gutsu, V. I., (1989). On the structure of attracting compacta,Differentsialnye Uravneniya,25, 5, 907–909, 920.

    MathSciNet  Google Scholar 

  10. Borsuk, K., (1967). Theory of retracts,Państwowe Wydawnictwo Naukowe,44.

  11. Borsuk, K., (1968). Concerning homotopy properties of compacta,Fund. Math.,62, 223–254.

    MATH  MathSciNet  Google Scholar 

  12. Borsuk, K., (1975). Theory of Shape,Państwowe Wydawnictwo Naukowe,59.

  13. Coddington, E. A. and Levinson, N., (1955).Theory of Ordinary Differential Equations, McGraw-Hill.

  14. Conley, C., (1978).Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics38.

  15. Conley, C. and Easton, R., (1971). Isolated invariant sets and isolating blocks,Trans. Amer. Math. Soc.,158, 35–61.

    Article  MATH  MathSciNet  Google Scholar 

  16. Conley, C. and Zehnder, E., (1984). Morse-type Index Theory for Flows and Periodic Solutions for Hamiltonian Equations,Comm. Pure Appl. Math.,XXXVII, 207–253.

    Article  MathSciNet  Google Scholar 

  17. Churchill, R. C., (1972). Isolated invariant sets in compact metric spaces,J. Diff. Eq.,12, 330–352.

    Article  MATH  MathSciNet  Google Scholar 

  18. Cruz, R. N. and de Rezende, K. A., (1999). Gradient-like flows on high-dimensional manifolds,Ergodic Theory Dynam. Systems,2, 2, 339–362.

    Article  Google Scholar 

  19. de Rezende, K. A., (1987). Smale flows on the three-sphere,Trans. Amer. Math. Soc.,303, 1, 283–310.

    Article  MATH  MathSciNet  Google Scholar 

  20. de Rezende, K. A. and Franzosa, R. D., (1993). Lyapunov graphs and flows on surfaces,Trans. Amer. Math. Soc.,340, 2, 767–784.

    Article  MATH  MathSciNet  Google Scholar 

  21. Dydak, J. and Segal, J., (1978).Shape theory. An introduction, Lecture Notes in Mathematics68, Springer.

  22. Floer, A., (1989). Witten’s complex and infinite dimensional Morse theory,J. Differential Geometry,30, 207–222.

    MATH  MathSciNet  Google Scholar 

  23. Franks, J., (1985). Nonsingular Smale flows on §3,Topology,24, 3, 265–282.

    Article  MATH  MathSciNet  Google Scholar 

  24. Franzosa, R., (1989). The connection matrix for Morse decompositions,Trans. Amer. Math. Soc.,311, 561–592.

    Article  MATH  MathSciNet  Google Scholar 

  25. Giraldo, A. and Sanjurjo, J.M. R., (1999). On the global structure of invariant regions of flows with asymptotically stable attractors,Math. Z.,232, 4, 739–746.

    Article  MATH  MathSciNet  Google Scholar 

  26. Giraldo, A. and Sanjurjo, J. M. R., (2007). Singular continuations of attractors, preprint.

  27. Giraldo, A. and Morón, M. A. and Ruiz del Portal, F. R. and Sanjurjo, J. M. R., (2005). Shape of global attractors in topological spaces,Nonlinear Anal.,60, 5, 837–847.

    Article  MATH  MathSciNet  Google Scholar 

  28. Guckenheimer, J. and Holmes, P., (1983).Nonlinear oscillations, dynamical systems and bifurcations of vector fiels, Applied Mathematical Sciences42, Springer-Verlag.

  29. Günther, B. and Segal, J., (1993). Every attractor of a flow on a manifold has the shape of a finite polyhedron,Proc. Amer. Math. Soc.,119, 1, 321–329.

    MATH  MathSciNet  Google Scholar 

  30. Gutiérrez, C., (1986). Smoothing continuous flows on two-manifolds and recurrences,Ergodic Theory Dynam. Systems,6, 1, 17–44.

    MATH  MathSciNet  Google Scholar 

  31. Hartman, P., (1964).Ordinary Differential Equations, John Wiley & Sons.

  32. Hastings, H. M., (1979). A higher-dimensional Poincaré-Bendixson theorem,Glas. Mat. Ser. III,14(34), 2, 263–268.

    MathSciNet  Google Scholar 

  33. Hatcher, A., (2002).Algebraic topology, Cambridge University Press.

  34. Hirsch, M. W., (1976).Differential topology, Graduate Texts in Mathematics,33, Springer-Verlag.

  35. Hopf, H., (1926). Vektorfelden inn-dimensionalen Mannigfaltigkeiten,Math. Annalen,96, 225–250.

    Article  MATH  MathSciNet  Google Scholar 

  36. Hu, S., (1965).Theory of retracts, Wayne State University Press.

  37. Kapitanski, L. and Rodnianski, I., (2000). Shape and Morse Theory of Attractors,Comm. Pure and Appl. Math.,LIII, 218–242.

    Article  MathSciNet  Google Scholar 

  38. Mardešić, S., (1971). On the shape of the quotient spaceS n/A,Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys.,19, 623–629.

    MATH  Google Scholar 

  39. Mardešić, S. and Segal, J., (1971). Shapes of compacta and ANR-systems,Fund. Math.,72, 1, 41–59.

    MATH  MathSciNet  Google Scholar 

  40. Mardešić, S. and Segal, J., (1971). Equivalence of the Borsuk and the ANR-system approach to shapes,Fund. Math.,72, 1, 61–68.

    MATH  MathSciNet  Google Scholar 

  41. Mardešić, S. and Segal, J., (1982).Shape Theory. The Inverse System Approach, North-Holland Publishing Company,26.

  42. McCord, C. K., (1988). The connection map for attractor-repeller pairs,Trans. Amer. Math. Soc.,308, 195–203.

    Article  MathSciNet  Google Scholar 

  43. McCord, C. K., (1989). On the Hopf index and the Conley index,Trans. Amer. Math. Soc.,313, 2, 853–860.

    Article  MATH  MathSciNet  Google Scholar 

  44. Mendelson, P., (1960). On unstable attractors,Bol. Soc. Mat. Mexicana (2),5, 270–276.

    MATH  MathSciNet  Google Scholar 

  45. Milnor, J., (1963).Morse Theory, Princeton University Press.

  46. Milnor, J., (1965).Topology from the differentiable viewpoint, The University Press of Virginia.

  47. Milnor, J., (1965).Lectures on the h-cobordism theorem. Notes by L. Siebenmann and J. Sondow, Princeton University Press.

  48. Morón, M. A. and Sánchez-Gabites, J. J. and Sanjurjo, J. M. R., (2007). Topology and dynamics of unstable attractors,Fund. Math., (to appear).

  49. Morse, M., (1925). Relations Between the Critical Points of a Real Function of n Independent Variables,Trans. Amer. Math. Soc.,27, 3, 345–396.

    MATH  MathSciNet  Google Scholar 

  50. Morse, M., (1931). The Critical Points of a Function ofn Variables,Trans. Amer. Math. Soc.,33, 1, 72–91.

    MathSciNet  Google Scholar 

  51. Mrozek, M., (1990). The Conley index on compact ANRs is of finite type,Results Math.,18, 3–4, 306–313.

    MATH  MathSciNet  Google Scholar 

  52. Nemytskii, V. V., (1954).Topological problems of the theory of dynamical systems, Translations of the AMS, 105.

  53. Nemytskii, V. V. and Stepanov, V. V., (1960).Qualitative Theory of Differential Equations, Princeton University Press.

  54. Nusse, H. E. and Yorke, J. A., (2003). Characterizing the basins with the most entangled boundaries,Ergodic Theory Dynam. Systems,23, 3, 895–906.

    Article  MATH  MathSciNet  Google Scholar 

  55. Rybakowski, K. P. (1987).The Homotopy Index and Partial Differential Equations, Springer-Verlag.

  56. Robbin, J. W. and Salamon, D., (1988). Dynamical systems, shape theory and the Conley index,Ergod. Th. & Dynam. Sys.,8*, 375–393.

    Article  MathSciNet  Google Scholar 

  57. Peixoto, M. M., (1962).Structural stability on two-dimensional manifolds, Topology,1, 101–120.

    MATH  MathSciNet  Google Scholar 

  58. Poincaré, H., (1881-82, 1885-86) Mémoire sur les courbes définies par une équation différentielle,J. de Math.,7, 375–442 (1881).;8, 251–296 (1882).;11, 187–244 (1885).;12, 151–217 (1886)..

    Google Scholar 

  59. Salamon, D., (1985). Connected simple systems and the Conley index of isolated invariant sets,Trans. Amer. Math. Soc.,291, 1, 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  60. Salamon, D., (1990). Morse theory, the Conley index, and Floer homology,Bull. London Math. Soc.,22, 113–140.

    Article  MATH  MathSciNet  Google Scholar 

  61. Sánchez-Gabites, J. J., (2007). Unstable attractors in manifolds, (preprint).

  62. Sánchez-Gabites, J. J. and Sanjurjo, J. M. R., (2006). On the topology of the boundary of a basin of attraction,Proc. Amer. Math. Soc., (to appear).

  63. Sánchez-Gabites, J. J. and Sanjurjo, J. M. R., (2007). Shape properties of the boundary of attractors,Glas. Mat.,42(62), 117–130.

    Article  MATH  Google Scholar 

  64. Sanjurjo, J. M. R., (1994). Multihomotopy, Čech spaces of loops and shape groups,Proc. London Math. Soc. (3),69, 2, 330–344.

    Article  MATH  MathSciNet  Google Scholar 

  65. Sanjurjo, J. M. R. (1995). On the structure of uniform attractors,J. Math. Anal. Appl.,192, 2, 519–528.

    Article  MATH  MathSciNet  Google Scholar 

  66. Sanjurjo, J. M. R., (2003). Morse equations and unstable manifolds of isolated invariant sets,Nonlinearity,16, 1435–1448.

    Article  MATH  MathSciNet  Google Scholar 

  67. Smale, S., (1960). Morse inequalities for a dynamical system,Bull. Amer. Math. Soc.,66, 43–49.

    Article  MATH  MathSciNet  Google Scholar 

  68. Smale, S., (1961). On gradient dynamical systems,Ann. of Math.,74, 199–206.

    Article  MathSciNet  Google Scholar 

  69. Smale, S., (1963). Stable manifolds for differential equations and diffeomorphisms,Ann. Scuola Norm. Sup. Pisa Ser. 3,17, 97–117.

    MATH  MathSciNet  Google Scholar 

  70. Spanier, E. H., (1966).Algebraic Topology, McGraw-Hill.

  71. Wallace, A. H., (1970).Algebraic Topology, W. A. Benjamin Inc.

  72. Ważewski, T., (1947). Sur un principe topologique de l’examen de l’allure asumptotique des intégrales des équations differentiélles ordinaires,Ann. Soc. Polon. Math., 20, 279–313.

    Google Scholar 

  73. Whitney, H., (1933). Regular families of curves,Ann. of Math.,34, 244–270.

    Article  MathSciNet  Google Scholar 

  74. Wiggins, S., (1994).Normally hyperbolic invariant manifolds in dynamical systems, Applied Mathematical Sciences105, Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Gabites, J.J. Dynamical systems and shapes. Rev. R. Acad. Cien. Serie A. Mat. 102, 127–159 (2008). https://doi.org/10.1007/BF03191815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191815

Keywords

Mathematics Subject Classifications

Navigation