Skip to main content
Log in

Sex-hormone-binding globulin is negatively correlated with femoral bone-mineral density in male cardiac-transplant recipients

Sexualhormon bindendes Globulin korreliert bei männlichen Herztransplantierten negativ mit der Knochenmineraldichte des Femurs

  • Original Article
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Osteoporose und eine dementsprechend erhöhte Frakturinzidenz sind häufige Probleme nach Herztransplantation.

Design

Wir führten eine Querschnittsanalyse an männlichen Herztransplantierten in einer späten Post-Transplantationsphase (4,2±2,6 Jahre postoperativ, n=21) durch. Wir bestimmten die Knochenmineraldichte durch Osteodensitometrie und quantitativen Fersenbeinultraschall. Weiters analysierten wir die endokrinen Charakteristika bei Herztransplantierten mit und ohne Wirbelkörperfrakturen.

Ergebnisse

Eine signifikante negative Korrelation wurde zwischen Sexualhormon bindendem Globulin und der Knochenmineraldichte des Schenkelhalses beobachtet (rs=−0,699;p Wert=0,001). Die lineare Regressions-analyse adjustiert für Alter und Body Mass Index bestätigte Sexualhormon bindendes Globulin als unabhängigen negativen Prädiktor für Knochenmineraldichte am Schenkelhals (r=−0,474;p Wert=0,035). Patienten mit prävalenten Wirbelkörperfrakturen zeigten eine signifikant niedrigere Knochenmineraldichte am Schenkelhals (p Wert=0,035). Im Gegensatz dazu zeigten Sexualhormon bindendes Globulin, Östradiol, gesamtes und freies Testosteron bei unseren Patienten keine signifikante Beziehung zu prävalenten Wirbelkörperfrakturen.

Schlussfolgerung

Die Assoziation von hohem Sexualhormon bindendem Globulin mit niedriger Knochenmineraldichte des Schenkelhalses konnte in einer Kohorte männlicher Herztransplantierter erstmals nachgewiesen werden. Unsere Daten sprechen für eine wichtige Rolle von Sexualhormon bindendem Globulin in der Pathogenese der Transplantationsosteopathie, obwohl — möglicherweise aufgrund der kleinen Patientenzahl — eine Interrelation des Sexualhormon bindenden Globulins mit prävalenten Wirbelkörperfrakturen nicht bewiesen werden konnte.

Summary

Background

Osteoporosis and the subsequent increase in incidence of fractures are a common problem after cardiac transplantation.

Design

We performed a cross-sectional evaluation of male cardiac-transplant recipients in a late post-transplantation period (4.2±2.6 years after cardiac transplantation, n=21). Bone-mineral density was measured by dual-energy X-ray absorptiometry and by quantitative heel ultrasound, and the endocrine characteristics of cardiac-transplant recipients with and without vertebral fractures were investigated.

Results

A significant negative correlation was observed between sex-hormone-binding globulin and femoral-neck bone-mineral density (rs=−0.699;p value=0.001). Linear regression analysis controlling for age and body-mass index proved sex-hormone-binding globulin to be an independent negative predictor for femoral-neck bone-mineral density (r=−0.474;p value=0.035). Patients with vertebral fractures had significantly lower femoral-neck bone-mineral density (p value=0.035). However, sex-hormone-binding globulin, total and free testosterone, and estradiol did not exhibit significant associations with vertebral fractures in our patients.

Conclusion

This investigation demonstrates for the first time an association between high sex-hormone-binding globulin levels and low femoral-neck bone-mineral density in a cohort of male cardiac-transplant recipients. Our data support the important role of sex-hormonebinding globulin in the pathogenesis of post-transplantation bone disease, although — possibly because of the small number of patients — we could not prove an interrelation of sex-hormone-binding globulin with vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rodino MA, Shane E (1998) Osteoporosis after organ transplantation. Am J Med 104: 459–469

    Article  CAS  PubMed  Google Scholar 

  2. Koeck CM, Schwappach DL, Niemann FM, Strassmann TJ, Ebner H, Klaushofer K (2001) Incidence and costs of osteoporosis-associated hip fractures in Austria. Wien Klin Wochenschr 113: 371–377

    CAS  PubMed  Google Scholar 

  3. Lee AH, Mull RL, Keenan GF, Callegari PE, Dalinka MK, Eisen HJ, et al (1994) Osteoporosis and bone morbidity in cardiac transplant recipients. Am J Med 96: 35–41

    Article  CAS  PubMed  Google Scholar 

  4. Meys E, Terreaux-Duvert F, Beaume-Six T, Dureau G, Meunier PJ (1993) Bone loss after cardiac transplantation: effects of calcium, calcidiol and monofluorophosphate. Osteoporos Int 3: 322–329

    Article  CAS  PubMed  Google Scholar 

  5. van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C (2000) Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 39: 1383–1389

    Article  Google Scholar 

  6. Cvetkovic M, Mann GN, Romero DF, Liang XG, Ma Y, Jee WS, et al (1994) The deleterious effects of long-term cyclosporine A, cyclosporine G, and FK506 on bone mineral metabolism in vivo. Transplantation 57: 1231–1237

    Article  CAS  PubMed  Google Scholar 

  7. Movsowitz C, Epstein S, Fallon M, Ismail F, Thomas S (1988) Cyclosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology 123: 2571–2577

    Article  CAS  PubMed  Google Scholar 

  8. Thiebaud D, Krieg MA, Gillard-Berguer D, Jacquet AF, Goy JJ, Burckhardt P (1996) Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation. Eur J Clin Invest 26: 549–555

    Article  CAS  PubMed  Google Scholar 

  9. Guo CY, Johnson A, Locke TJ, Eastell R (1998) Mechanisms of bone loss after cardiac transplantation. Bone 22: 267–271

    Article  CAS  PubMed  Google Scholar 

  10. Fahrleitner A, Prenner G, Kniepeiss D, Iberer F, Tscheliessnigg KH, Piswanger-Sölkner C, et al (2002) Serum osteoprotegerin levels in patients after liver transplantation and correlation to bone turnover, bone mineral density and fracture status. Wien Klin Wochenschr 114: 717–724

    CAS  PubMed  Google Scholar 

  11. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grand-jean H, Muller C, et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11: 1531–1538

    CAS  PubMed  Google Scholar 

  12. Höfle G, Holzmüller H, Gouya G, Hergan K, Hubmann M, Langer P, et al (2003) Lower serum beta-CrossLaps in male cardiac transplant recipients treated without prednisolone. Transpl Int 16: 523–528

    PubMed  Google Scholar 

  13. Slemenda CW, Turner CH, Peacock M, Christian JC, Sorbel J, Hui SL, et al (1996) The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporos Int 6: 178–182

    Article  CAS  PubMed  Google Scholar 

  14. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15: 1526–1536

    Article  CAS  PubMed  Google Scholar 

  15. Legrand E, Hedde C, Gallois Y, Degasne I, Boux de Casson F, Mathieu E, et al (2001) Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone 29: 90–95

    Article  CAS  PubMed  Google Scholar 

  16. Center JR, Nguyen TV, Sambrook PN, Eisman JA (2000) Hormonal and biochemical parameters and osteoporotic fractures in elderly men. J Bone Miner Res 15: 1405–1411

    Article  CAS  PubMed  Google Scholar 

  17. Rapado A, Hawkins F, Sobrinho L, Diaz-Curiel M, Galvao-Telles A, Arver S, et al (1999) Bone mineral density and androgen levels in elderly males. Calcif Tissue Int 65: 417–421

    Article  CAS  PubMed  Google Scholar 

  18. Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res 16: 2142–2151

    Article  CAS  PubMed  Google Scholar 

  19. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, et al (1990) A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant 9: 587–593

    CAS  PubMed  Google Scholar 

  20. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9: 1137–1141

    CAS  PubMed  Google Scholar 

  21. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8: 1137–1148

    Article  CAS  PubMed  Google Scholar 

  22. Kiel D (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Miner Res 10: 518–523

    CAS  PubMed  Google Scholar 

  23. Mezquita-Raya P, Munoz-Torres M, Luna JD, Luna V, Lopez-Rodriguez F, Torres-Vela E, et al (2001) Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. J Bone Miner Res 16: 1408–1415

    Article  CAS  PubMed  Google Scholar 

  24. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341: 72–75

    Article  CAS  PubMed  Google Scholar 

  25. Legrand E, Chappard D, Pascaretti C, Duquenne M, Rondeau C, Simon Y, et al (1999) Bone mineral density and vertebral fractures in men. Osteoporos Int 10: 265–270

    Article  CAS  PubMed  Google Scholar 

  26. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD (2000) Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. J Bone Miner Res 15: 1835–1841

    Article  CAS  PubMed  Google Scholar 

  27. Center JR, Nguyen TV, Sambrook PN, Eisman JA (1999) Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab 84: 3626–3635

    Article  CAS  PubMed  Google Scholar 

  28. Gillberg P, Johansson AG, Ljunghall S (1999) Decreased estradiol levels and free androgen index and elevated sex hormone-binding globulin levels in male idiopathic osteoporosis. Calcif Tissue Int 64: 209–213

    Article  CAS  PubMed  Google Scholar 

  29. Evans SF, Davie MW (2002) Low body size and elevated sex-hormone binding globulin distinguish men with idiopathic vertebral fracture. Calcif Tissue Int 70: 9–15

    Article  CAS  PubMed  Google Scholar 

  30. Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S et al (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med 339: 733–738

    Article  CAS  PubMed  Google Scholar 

  31. National Osteoporosis Foundation (1998) Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporos Int 8 [Suppl 4]: S1-S88

    Google Scholar 

  32. Jesserer H (1982) Advances in the treatment of osteoporosis. Wien Klin Wochenschr 94: 135–139

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Höfle M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höfle, G., Tautermann, G., Saely, C.H. et al. Sex-hormone-binding globulin is negatively correlated with femoral bone-mineral density in male cardiac-transplant recipients. Wien Klin Wochenschr 116, 170–175 (2004). https://doi.org/10.1007/BF03040483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040483

Schlüsselwörter

Key words

Navigation