Skip to main content
Log in

Retinoic acid isomers protect hippocampal neurons from amyloid-β induced neurodegeneration

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Attenuating amyloid-β mediated neurodegeneration is of major therapeutic consideration in the potential treatment of Alzheimer disease. Previously, we found that a high dietary consumption of retinoic acid was associated with a reduced incidence of Alzheimer disease. Therefore, in this study, we investigated whether amyloid-β mediated cell death in primary hippocampal neurons could be prevented by retinoic acid isomers. Our results suggest that retinoic acid isomers, including all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid, may play an important role in protecting neurons from amyloid-β-induced cell death. Retinoic acid may therefore afford a novel therapeutic mechanism for the treatment and prevention of Alzheimer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlemeyer B and J Krieglstein (1998) Retinoic acid reduces stau-rosporine-induced apoptotic damage in chick embryonic neurons by suppressing reactive oxygen species production.Neurosci. Lett. 246, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Ahlemeyer B and J Krieglstein (2000) Inhibition of glutathione depletion by retinoic acid and tocopherol protects cultured neurons from staurosporine-induced oxidative stress and apoptosis.Neurochem. Int. 36, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Behl C, JB Davis, R Lesley and D Schubert (1994) Hydrogen peroxide mediates amyloid beta protein toxicity.Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1995) The molecular and genetic dissection of the retinoid signaling pathway.Recent Prog. Horm. Res. 50, 317–332.

    PubMed  CAS  Google Scholar 

  • Chung JJ, S Cho, YK Kwon, DH Kim and K Kim (2000) Activation of retinoic acid receptor ? induces proliferation of immortalized hippocampal progenitor cells.Mol. Brain Res. 83, 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT and P Puttfarcken (1993) Oxidative stress, glutamate, and neurodegenerative disorders.Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Das NP (1989) Effects of vitamin A and its analogs on nonenzy-matic lipid peroxidation in rat brain mitochondria.J. Neurochem. 52, 585–588.

    Article  PubMed  CAS  Google Scholar 

  • De Luca LM (1991) Retinoids and their receptors in differentiation, embryogenesis, and neoplasia.FASEB J. 5, 2924–2933.

    PubMed  Google Scholar 

  • Glenner GG and CW Wong (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cere-brovascular amyloid protein.Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Goodman Y and MP Mattson (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury.Exp. Neurol. 128, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Goodman AB and AB Pardee (2003) Evidence for defective retinoid transport and function in late onset Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 100, 2901–2905.

    Article  PubMed  CAS  Google Scholar 

  • Haass C, MG Schlossmacher, AY Hung, C Vigo-Pelfrey, A Mellon, BL Ostaszewski, I Lieberburg, EH Koo, D Schenk, DB Teplow and DJ Selkoe (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism.Nature 359, 322–325.

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, JM Carney, MP Mattson, M Aksenova, M Harris, JF Wu, RA Floyd and DA Butterfield (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease.Proc. Natl. Acad. Sci. USA 91, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Iwata M, M Mukai, Y Nakai and R Iseki (1992) Retinoic acids inhibit activation-induced apoptosis in T cell hybridomas and thymocytes.J. Immunol. 149, 3302–3308.

    PubMed  CAS  Google Scholar 

  • Ketley NJ, PD Allen, SM Kelsey and AC Newland (1997) Modulation of idarubicin-induced apoptosis in human acute myeloid leukemia blasts by all-trans retinoic acid, 1,25(OH)2 vitamin D3, and granulocyte-macrophage colony-stimulating factor.Blood 90, 4578–4587.

    PubMed  CAS  Google Scholar 

  • Krohn AJ, T Wahlbrink and JH Prehn (1999) Mitochondrial depolarization is not required for neuronal apoptosis.J. Neurosci. 19, 7394–7404.

    PubMed  CAS  Google Scholar 

  • Langenfeld J, F Lonardo, H Kiyokawa, T Passalaris, M-J Ahn, V Rusch and E Dmitrovsky (1996). Inhibited transformation of immortalized human bronchial epithelial cells by retinoic acid is linked to cyclin E down-regulation.Oncogene 13, 1983–1990.

    PubMed  CAS  Google Scholar 

  • Lee MS, YT Kwon, M Li, J Peng, RM Friedlander and LH Tsai (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain.Nature (Lond.) 405, 360–364.

    Article  CAS  Google Scholar 

  • Liu M, A Iavarones and LP Freedman (1996) Transcriptional activation of the human p21WAF1/CIP1 gene by retinoic acid receptor.J. Biol. Chem. 271, 31723–31728.

    Article  PubMed  CAS  Google Scholar 

  • Loo DT, A Copani, CJ Pike, ER Whittemore, AJ Walencewicz and CW Cotman (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons.Proc. Natl. Acad. Sci. USA 90, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, G Simms, NA Weinman, G Multhaup, BL McDonald and K Beyreuther (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome.Proc. Natl. Acad. Sci. USA 82, 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, B Cheng, D Davis, K Bryant, I Lieberburg and RE Rydel (1992) ß-Amyloid peptides destabilize calcium homeosta-sis and render human cortical neurons vulnerable to excitotoxic-ity.J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson MP, SW Barger, JG Begley and RJ Mark (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture.Methods Cell. Biol. 46, 187–216.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Manzano V, Y Ishikawa, J Lucio-Cazana and M Kitamura (1999) Suppression of apoptosis by all-trans-retinoic acid. Dual intervention in the c-Jun n-terminal kinase-AP-1 pathway.J. Biol. Chem. 274, 20251–20258.

    Article  PubMed  CAS  Google Scholar 

  • Morishima Y, Y Gotoh, J Zieg, T Barrett, H Takano, R Flavell, RJ Davis, Y Shirasaki and ME Greenberg (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand.J. Neurosci. 2, 7551–7560.

    Google Scholar 

  • Nabeyrat E, V Besnard, S Corroyer, V Cazals and A Clement (1998) Retinoic acid-induced proliferation of lung alveolar epithelial cells: relation with the IGF system.Am. J. Physiol. 275, L71-L79.

    PubMed  CAS  Google Scholar 

  • Nabeyrat E, S Corroyer, V Besnard, V Cazals-Laville, J Bourbon and A Clement (2001) Retinoic acid protects against hyperoxia-mediated cell-cycle arrest of lung alveolar epithelial cells by preserving late G1 cyclin activities.Am. J. Respir. Cell. Mol. Biol. 25, 507–514.

    PubMed  CAS  Google Scholar 

  • Napoli JL (1996) Biochemical pathways of retinoid transport, metabolism, and signal transduction.Clin. Immunol. Immunopathol. 80, S52-S62.

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, G Perry, G Aliev, T Hirai, A Takeda, EK Balraj, PK Jones, H Ghanbari, T Wataya, S Shimohama, S Chiba, CS Atwood, RB Petersen and MA Smith (2001) Oxidative damage is the earliest event in Alzheimer disease.J. Neuropathol. Exp. Neurol. 60, 759–767.

    PubMed  CAS  Google Scholar 

  • Obrenovich ME, AK Raina, O Ogawa, CS Atwood and MA Smith (2004) Alzheimer disease — a new beginning, or a final exit?, InThe Cell Cycle and Neuronal Cell Death (Copani A and F Nicoletti, Eds.), (Landes Bioscience: Georgetown, TX, USA), In press.

    Google Scholar 

  • Ogawa O, HG Lee, X Zhu, PLR Harris, RJ Castellani, G Perry and MA Smith (2003) Increased p27, an essential component of cell cycle control, in Alzheimer’s disease.Aging Cell 2, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Packer L (1990)Retinoids. Part B, Cell differentiation and Clinical Applications.Methods Enzymol. 190 (Academic Press: San Diego, CA, USA), 488 p.

    Google Scholar 

  • Paradis E, H Douillard, M Koutroumanis, C Goodyer and A LeBlanc (1996) Amyloid-beta peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates bax expression in human neurons.J. Neurosci. 16, 7533–7539.

    PubMed  CAS  Google Scholar 

  • Patrick GN, L Zukerberg, M Nikolic, S de la Monte, P Dikkes and LH Tsai (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration.Nature (Lond.) 402, 615–622.

    Article  CAS  Google Scholar 

  • Pike CJ, AJ Walencewicz, CG Glabe and CW Cotman (1991)In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity.Brain Res. 563, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Pike CJ, D Burdick, AJ Walencewicz, CG Glabe and CW Cotman (1993) Neurodegeneration induced by beta-amyloid peptidesin vitro: the role of peptide assembly state.J. Neurosci. 13, 1676–1687.

    PubMed  CAS  Google Scholar 

  • Raina AK, X Zhu, CA Rottkamp, M Monteiro, A Takeda and MA Smith (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease.J. Neurosci. Res. 61, 128–133.

    Article  PubMed  CAS  Google Scholar 

  • Raina AK, A Hochman, X Zhu, CA Rottkamp, A Nunomura, SL Siedlak, H Boux, RJ Castellani, G Perry and MA Smith (2001) Abortive apoptosis in Alzheimer’s disease.Acta Neuropathol. 101, 305–310.

    PubMed  CAS  Google Scholar 

  • Rapoport M and A Ferreira (2000) PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hip-pocampal neurons.J. Neurochem. 74, 125–133

    Article  PubMed  CAS  Google Scholar 

  • Rottkamp CA, AK Raina, X Zhu, E Gaier, AI Bush, CS Atwood, M Chevion, G Perry and MA Smith (2001) Redox-active iron mediates amyloid-ß toxicity.Free Radic. Biol. Med. 30, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Samokyszyn VM and LJ Marnett (1990) Inhibition of liver micro-somal lipid peroxidation by 13-cis-retinoic acid.Free Radic. Biol. Med. 8, 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Schule R, P Rangarajan, N Yang, S Kliewer, LJ Ransone, J Bolado, IM Verma and RM Evans (1991) Retinoic acid is a negative regulator of AP-1-responsive genes.Proc. Natl. Acad. Sci. USA 88, 6092–6096.

    Article  PubMed  CAS  Google Scholar 

  • Seewaldt VL, J-H Kim, LE Caldwell, BS Johnson, K Swisshelm and S Collins (1997). All-trans-retinoic acid mediates G1 arrest but no apoptosis of normal human mammary epithelial cells.Cell Growth Differ. 8, 631–641.

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1990) Deciphering Alzheimer’s disease: the amyloid precursor protein yields new clues.Science 248, 1058–1060.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid ß-protein: a reanalysis of a therapeutic hypothesis.J. Alzheimers Dis. 3, 75–81.

    PubMed  CAS  Google Scholar 

  • Smith CD, JM Carney, T Tatsumo, ER Stadtman, RA Floyd, WR Markesbery (1992) Protein oxidation in aging brain.Ann. NY Acad. Sci. 663, 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, K Hirai, K Hsiao, MA Pappolla, PLR Harris, SL Siedlak, M Tabaton and G Perry (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress.J. Neurochem. 70, 2212–2215.

    PubMed  CAS  Google Scholar 

  • Smith MA, GJ Petot and G Perry (1999) Diet and oxidative stress: a novel synthesis of epidemiological data on Alzheimer’s disease.J. Alzheimers Dis. 4-5, 203–206.

    Google Scholar 

  • Smith MA, G Casadesus, JA Joseph and G Perry (2002) Amyloid-ß and tau serve antioxidant functions in the aging and Alzheimer brain.Free Radic. Biol. Med. 33, 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  • Williamson R, T Scales, BR Clark, G Gibb, CH Reynolds, S Kellie, IN Bird, IM Varndell, PW Sheppard, I Everallet al. (2002) Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of Src family protein kinases.J. Neurosci. 22, 10–20.

    PubMed  CAS  Google Scholar 

  • Xia Z, J Tauskela and DL Small (2003) Disulfonic stilbenes prevent ß-amyloid (25-35) neuronal toxicity in rat cortical cultures.Neurosci. Lett. 340, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, MS Vacchio and JD Ashwell (1993) 9-cis-retinoic acid inhibits activation-driven T-cell apoptosis: implications for retinoid X receptor involvement in thymocyte development.Proc. Natl. Acad. Sci. USA 90, 6170–6174.

    Article  PubMed  CAS  Google Scholar 

  • Zauli G, G Visani, M Vitale, D Gibellini, L Bertolaso and S Capitani (1995) All-trans retinoic acid shows multiple effects on the survival, proliferation and differentiation of human fetal CD34+ haemopoietic progenitor cells.Br. J. Haematol. 90, 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom RH, E Lindqvist, AM de Urguiza, A Tomac, U Eriksson, T Perlmann and L Olson (1999) Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid.Eur. J. Neurosci. 11, 407–416.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, AK Raina, H Boux, ZL Simmons, A Takeda and MA Smith (2000) Activation of oncogenic pathways in degenerating neurons in Alzheimer disease.Int. J. Dev. Neurosci. 18, 433–437.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, AK Raina, CA Rottkamp, G Aliev, G Perry, H Boux and MA Smith (2001a) Activation and redistribution of c-Jun N-ter-minal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease.J. Neurochem. 76, 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, RJ Castellani, A Takeda, A Nunomura, CS Atwood, G Perry and MA Smith (2001b) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the “two hit” hypothesis.Mech. Ageing Dev. 123, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, O Ogawa, Y Wang, G Perry and MA Smith (2003) JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer’s disease.J. Neurochem. 85, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, AK Raina, G Perry and MA Smith (2004) Alzheimer’s disease: the two-hit hypothesis.Lancet Neurol. 3, 219–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark A. Smith or Yakup Alicigüzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, M., Karaüzüm, S.B., Perry, G. et al. Retinoic acid isomers protect hippocampal neurons from amyloid-β induced neurodegeneration. neurotox res 7, 243–250 (2005). https://doi.org/10.1007/BF03036453

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036453

Keywords

Navigation