Skip to main content
Log in

Trialuminide intermetallic alloys for elevated temperature applications—overview

  • Published:
Metals and Materials Aims and scope Submit manuscript

Summary

The binary trialuminides typically crystallize with the tetragonal D022 (or DO23) structures and frequently exist as line compounds, making it very difficult to produce them as single-phase material. As a result of their low symmetry, ordered tetragonal structures, these compounds show such limited ductility at and immediately above room temperature as to find no useful engineering application. The compound Al3Ti is known to deform by ordered twinning at ambient temperature, which does not disturb the D022 symmetry of the lattice during deformation, but leads to only four potential deformation systems, which is insufficient for the generalized von Mises plasticity criterion.

Recent research effort has moved to improving the ductility of the trialuminides by transforming their tetragonal (D022/D023) crystal structures into the closely-related ordered cubic Ll2 structure, in the hope that the increased number of independent slip systems in the cubic structure will enable the alloys to deform more easily. Significant ductility in compression, and measurable plastic strain on the tensile side of bend bars, have been reported, especially in Cr and Mn-modified Ll2 alloys. However, notwithstanding these hopeful signs in the Ll2 trialuminides, these cubic alloys remain uniformly brittle in tension at room temperature. At present, the brittle behaviour of the Ll2 trialuminides appears to be intrinsic to their nature, with little scope for improvement by microstructural modification. The controversy assocated with room temperature dislocation dissociation in the Ll2 trialuminides has been concluded that the superdislocations on 111 planes are APB-dissociated pairs rather than SISF-coupled partials.

In attempting to identify new approaches to overcoming the brittleness of trialuminide-based alloys, it is worth noting potential advantages of multiphase alloys over single phase alloys. The development of fine duplex microstructures, by combining judicious alloying with controlled thermal or thermo-mechanical treatments, appears to offer promise for enhancing the ductility of brittle monolithic alloys. Given this evidence, it is suggested that the design and development of multiphase or duplex microstructures for trialuminide-based alloys may provide an approach of interest in providing the ductility and/or toughness of such alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NMAB-419, National Academy Press, Washington, D.C. (1984).

  2. P. Villars and L.D. Calvert,Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (2nd. Ed.), ASM, Metals Park, Ohio (1991).

    Google Scholar 

  3. J. C. Schuster and H. Ipser,Z. Metallkd.,81, 389 (1990).

    CAS  Google Scholar 

  4. M. Yamaguchi and H. Inui, inIntermetallic Compounds—Principles and Practice, Vol. 2 (eds., J. H. Westbrook and R. L. Fleischer), John Wiley & Sons, New York, NY, p. 147 (1995).

    Google Scholar 

  5. K. Hirukawa, H. Mabuchi and Y. Nakayama,Scripta metall.,25, 1211 (1991).

    Article  CAS  Google Scholar 

  6. A. Raman and K. Schubert,Z. Metallkd.,56, 40 (1965).

    CAS  Google Scholar 

  7. A. Raman and K. Schubert,Z. Metallkd.,56, 99 (1965).

    CAS  Google Scholar 

  8. A. Seibold,Z. Metallkd.,72, 712 (1981).

    CAS  Google Scholar 

  9. P. G. Nash, V. Vejins and W. W. Liang,Bull. of Alloy Phase Diagrams,3, 367 (1982).

    Article  Google Scholar 

  10. H. Mabuchi, K. Hirukawa and Y. Nakayama,Scripta metall.,23, 1761 (1989).

    Article  CAS  Google Scholar 

  11. H. Mabuchi, K. Hirukawa, H. Tsuda and Y. Nakayama,Scripta metall.,24, 505 (1990).

    Article  CAS  Google Scholar 

  12. H. Mabuchi, K. Hirukawa, K. Katayama, H. Tsuda and Y. Nakayama,Scripta metall.,24, 1553 (1990).

    Article  CAS  Google Scholar 

  13. S. Zhang, J. P. Nic and D. E. Mikkola,Scripta metall.,24, 57 (1990).

    Article  CAS  Google Scholar 

  14. W.O. Powers and J.A. Wert, Metall. Trans., 21A, 145 (1990).

    CAS  Google Scholar 

  15. D. G. Pettifor,Mater. Sci. Tech.,4, 675 (1988).

    CAS  Google Scholar 

  16. K. S. Kumar, inStructural Intermetallics (eds., R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal), TMS, Warrendale, PA, p. 87 (1993).

    Google Scholar 

  17. F. H. Hayes, inTernary Alloys-A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Vol. 3 (eds., G. Petzow and G. Effenberg), VCH, New York, p. 426 (1993).

    Google Scholar 

  18. W. -S. Chang and B. C. Muddle,Mater. Sci. Eng,A192/193, 233 (1995).

    Google Scholar 

  19. W. -S. Chang and B. C. Muddle,Micron,25, 519 (1994).

    Article  CAS  Google Scholar 

  20. W. -S. Chang and B. C. Muddle, Metals & Materials,2, 233 (1996).

    Article  CAS  Google Scholar 

  21. M. Yamaguchi and Y. Umakoshi,Prog. Mat. Sci.,34, 1 (1990).

    Article  CAS  Google Scholar 

  22. E. P. George, D. P. Pope, C. L. Fu and J. H. Schneibel,ISIJ International,31, 1063 (1991).

    Article  CAS  Google Scholar 

  23. D. G. Morris, inStructural Intermetallics (eds., R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal), TMS, Warrendale, PA, p. 97 (1993).

    Google Scholar 

  24. D. E. Mikkola, J. P. Nic, S. Zhang and W. W. Milligan, ISIJ International,31, 1076 (1991).

    Article  CAS  Google Scholar 

  25. C. McCullough, J. J. Valencia, C. G. Levi and R. Mehrabian,Acta metall.,37, 1321 (1989).

    Article  CAS  Google Scholar 

  26. J. L. Murray, inBinary Alloy Phase Diagrams (2nd. ed.), Vol. 1 (ed., T. B. Massalski), ASM International, Materials Park, OH, p. 225 (1990).

    Google Scholar 

  27. A. Raman and K. Schubert,Z. Metallkd.,56, 44 (1965).

    CAS  Google Scholar 

  28. F. J. J. Van Loo and G. D. Rieck,Acta metall.,21, 61 (1973).

    Article  Google Scholar 

  29. R. Miida,Jpn. J. Appl. Phys.,25, 1815 (1986).

    Article  ADS  CAS  Google Scholar 

  30. A. Loiseau, G. Van Tendeloo, R. Portier and F. Ducastelle,J. Physique,46, 595 (1985).

    CAS  Google Scholar 

  31. K. Kaltenbach, S. Gama, D. Pinatti and K. Schulze,Z. Metallkd.,80, 511 (1989).

    CAS  Google Scholar 

  32. J. C. Mishurda and J. H. Perepezko, inMicrostructurel Property Relationships in Titanium Aluminides and Alloys (eds., Y -W. Kim and R. R. Boyer), TMS, Warrendale, PA, p. 3 (1991).

    Google Scholar 

  33. J. H. Perepezko and J. C. Mishurda, inTitanium ’92 Science and Technology (eds., F. H. Froes and I. Caplan), TMS, Warrendale, PA, p. 563 (1993).

    Google Scholar 

  34. R. Miida, M. Kasahara and D. Watanabe,Jpn. J. Appl. Phys.,19, L707 (1980).

    Article  ADS  CAS  Google Scholar 

  35. A. Loiseau and C. Vannuffel,Phys. Stat. Sol.(a),107, 655 (1988).

    Article  CAS  Google Scholar 

  36. S. Ogawa, inOrder-Disorder Transformations in Alloys (ed., H. Warlimont), Springer-Verlag, Berlin, p. 241 (1974).

    Google Scholar 

  37. P. R. Subramanian, J. P. Simmons, M. G. Mendiratta and D. M. Dimiduk,Mat. Res. Soc. Symp. Proc.,133, p. 51 (1989).

    Google Scholar 

  38. R. C. Hansen and A. Raman,Z. Metallkd.,61, 115 (1970).

    CAS  Google Scholar 

  39. D. P. Pope and S. S. Ezz,Int. Met. Rev.,29, 136 (1984).

    CAS  Google Scholar 

  40. M. Yamaguchi, Y. Umakoshi and T. Yamane,Phil. Mag.,A55, 301 (1987).

    ADS  Google Scholar 

  41. V. K. Vasudevan, R. Wheeler and H. L. Fraser,Mat. Res. Soc. Symp. Proc.,133, p. 705 (1989).

    Google Scholar 

  42. G. Vanderschaeve and T. Sarrazin,Phys. Stat. Sol(a),43, 459 (1977).

    Article  CAS  Google Scholar 

  43. Y. Umakoshi, M. Yamaguchi, T. Yamane and T. Hirano,Phil. Mag.,A58, 651 (1988).

    ADS  Google Scholar 

  44. A. Raman,Z. Metallkd.,57, 535 (1966).

    CAS  Google Scholar 

  45. K. Hashimoto, H. Doi and T. Tsujimoto,J. Jpn., Inst. Metals,49, 410 (1985).

    CAS  Google Scholar 

  46. M. Paruchuri and T. Massalski,Mat. Res. Soc. Symp. Proc.,213, 143 (1991).

    CAS  Google Scholar 

  47. T. Ahmed and H.M. Flower,Mater. Sci. Eng.,A152, 31 (1992).

    CAS  Google Scholar 

  48. C. T. Liu,Int. Met. Rev.,29, 168 (1984).

    CAS  Google Scholar 

  49. J. P. Nic, S. Zhang and D. E. Mikkola,Scripta metall.,24, 1099 (1990).

    Article  CAS  Google Scholar 

  50. J. P. Nic, S. Zhang and D. E. Mikkola,Mat. Res. Soc. Symp. Proc.,213, 697 (1991).

    CAS  Google Scholar 

  51. C. J. Sparks, W. D. Porter, J. H. Schneibel, W. C. Oliver and C. G. Golec, inAlloy Phase Stability and Design (eds. G. M. Stocks, D. P. Pope and A. F. Giamei)Mat. Res. Soc. Symp. Proc.,186, 175 (1991).

    CAS  Google Scholar 

  52. H. Mabuchi,Intermetallics,1, 1 (1993).

    Article  MathSciNet  Google Scholar 

  53. J. H. Schneibel and W. O. Porter,Mat. Res. Soc. Symp. Proc.,133, p. 335 (1989).

    Google Scholar 

  54. I. S. Virk, M. B. Winnicka and R. A. Varin,Scripta metall.,24, 2181 (1990).

    Article  CAS  Google Scholar 

  55. V. Ya. Markiv, A. I. Storozhenko and I. N. Panyuta,Dop. Akad. Nauk Ukr. RSRA, Fiz-Mat. Tekh,36, 463 (1974).

    CAS  Google Scholar 

  56. W. -S. Chang, Ph. D Thesis, Department of Materials Engineering, Monash University, Clayton, Victoria, Australia, (1995).

    Google Scholar 

  57. M. B. Winnicka and R. A. Varin,Scripta metall.,25, 2297 (1991).

    Article  CAS  Google Scholar 

  58. Z. L. Wu and D. P. Pope,Acta metall. mater.,42, 509 (1994).

    Article  CAS  Google Scholar 

  59. L. Potez, A. Loiseau, S. Naka and G. Lapasset,J. Mater. Res.,7, 876 (1992).

    Article  ADS  CAS  Google Scholar 

  60. P. Villars,J. Less-Common Met.,102, 199 (1984).

    Article  CAS  Google Scholar 

  61. D. G. Pettifor,New Scientist,29, 48 (1986).

    Google Scholar 

  62. C. T. Liu, J. A. Horton and D. G. Pettifor,Mat. Res. Soc. Symp. Proc.,133, 37 (1989).

    Google Scholar 

  63. P. R. Munroe,Scripta metall. mater.,27, 1373 (1992).

    Article  CAS  Google Scholar 

  64. A. K. Sinha,Trans. AIME,245, 237 (1969).

    CAS  Google Scholar 

  65. J. H. N. Van Vucht,J. Less-Common Metals,11, 308 (1966).

    Article  Google Scholar 

  66. N. Durlu and O.T. Inal,Scripta metall.,25, 2475 (1991).

    Article  CAS  Google Scholar 

  67. N. Durlu and O.T. Inal,Mater. Sci. Eng.,A152, 67 (1992).

    CAS  Google Scholar 

  68. P. R. Munroe and I. Baker,J. Mater. Res.,6, 943 (1991).

    Article  ADS  CAS  Google Scholar 

  69. S. M. Kim, M. Kogachi, A. Kameyama and D. G. Morris,Acta metall. mater.,43, 3139 (1995).

    Article  CAS  Google Scholar 

  70. H. J. Beattie, inIntermetallic Compounds (ed. J. H. Westbrook), John Wiley & Sons, Inc., New York, p. 144 (1967).

    Google Scholar 

  71. E. V. Kozlov, N. M. Kormin and N. M. Matveyeva,Izv., Acad. Nauk., Ser., Metalli,5, 150 (1979).

    Google Scholar 

  72. N. Furushiro and S. Hori,Acta metall.,33, 867 (1985).

    Article  CAS  Google Scholar 

  73. A. Majumdar, Ph. D Thesis, Department of Materials Engineering, Monash University, Clayton, Australia (1989).

    Google Scholar 

  74. S. Srinivasan, P. B. Desch and R. B. Schwarz,Scripta metall.,25, 2513 (1991).

    Article  CAS  Google Scholar 

  75. J. H. Schneibel, J. A. Horton and W. D. Porter,Mater. Sci. Eng.,A152, 126 (1992).

    CAS  Google Scholar 

  76. R. A. Varin, M. B. Winnicka and I. S. Virk, inStructural Intermetallics (eds., R. Darolia, J. J. Lewandovki, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal), TMS, Warrendale, PA, p. 265 (1993).

    Google Scholar 

  77. K. S. Kumar and S. A. Brown,Acta metall. mater.,40, 1923 (1992).

    Article  CAS  Google Scholar 

  78. K. S. Kumar and S. A. Brown,Phil. Mag.,A65, 91 (1992).

    ADS  Google Scholar 

  79. S. A. Brown and K. S. Kumar,J. Mater. Res.,8, 1763 (1993).

    Article  ADS  CAS  Google Scholar 

  80. M. B. Winnicka and R. A. Varin,Scripta metall.,24, 611 (1990).

    Article  CAS  Google Scholar 

  81. M. B. Winnicka and R. A. Varin,Scripta metall.,25, 1289 (1991).

    Article  CAS  Google Scholar 

  82. K. Aoki and O. Izumi,Nippon Kinzoku Gakkaishi,43, 1190 (1979).

    CAS  Google Scholar 

  83. C. D. Turner, W. O. Powers and J. A. Wert,Acta metall.,37, 2635 (1989).

    Article  CAS  Google Scholar 

  84. R. Lerf and D. G. Morris,Acta metall. mater.,39, 2419 (1991).

    Article  CAS  Google Scholar 

  85. H. Inui, D. E. Luzzi, W. D. Porter, D. P. Pope, V. Vitek and M. Yamaguchi,Phil. Mag.,A65, 245 (1992).

    ADS  Google Scholar 

  86. W. O. Powers and J. A. Wert,Metall. Trans.,A21, 145 (1990).

    Google Scholar 

  87. G. Hu, S. Chen, X. Wu and X. Chen,J. Mater. Res.,4, 78 (1991).

    Google Scholar 

  88. D. G. Morris,J. Mater. Res.,7, 303 (1992).

    Article  ADS  CAS  Google Scholar 

  89. P. Veissiere and D. G. Morris,Phil. Mag.,A67, 491 (1993).

    ADS  Google Scholar 

  90. S. Zhang, W. W. Milligan and D. E. Mikkola,Scripta metall. mater.,27, 1073 (1992).

    Article  CAS  Google Scholar 

  91. S. Zhang, J. P. Nic, W. W. Milligan and D. E. Mikkola,J. Mater. Res.,9, 553 (1994).

    Article  ADS  CAS  Google Scholar 

  92. L. Christodoulou, inSuppl. 2 to Encyclopedia of Materials Science and Engineering (edited by R. W. Cahn), Pergamon, Oxford, p. 1346 (1990).

    Google Scholar 

  93. Y. -W. Kim and D. M. Dimiduk,J. Miner. Met. Mater. Soc, TMS,43, 1991, pp. 40–47.

    CAS  Google Scholar 

  94. S. Guha, P. R. Munroe and I. Baker, inHigh Temperature Ordered Intermetallic Alloys III (C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch, eds.),MRS Symp. Proc.,133, MRS, Pittsburgh, PA, 1989, p. 633.

    Google Scholar 

  95. R. Yang, J. A. Leake and R. W. Cahn,Mater. Sci. Eng.,A152, 227 (1992).

    CAS  Google Scholar 

  96. W. Funk and E. Blank,Metall. Trans.,19A, 987 (1988).

    CAS  Google Scholar 

  97. D. Shechtman, W. J. Boettinger, T. Z. Kattamis and F. S. Biancaniello,Acta Metall.,32, 749 (1984).

    Article  CAS  Google Scholar 

  98. P. R. Subramanian, M. G. Mendiratta, D. B. Miracle and D. M. Dimiduk, inIntermetallic Matrix Composites, (D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking, eds.),MRS Symp. Proc.,194, MRS, Pittsburgh, PA, p. 147 (1990).

    Google Scholar 

  99. D. P. Mason, and D. C. Van Aken, inHigh Temperature Ordered Intermetallic Alloys IV (L. A. Johnson, D. P. Pope and J. O. Stiegler, eds.),MRS Symp. Proc.,213, MRS, Pittsburgh, PA, p. 1033 (1991).

    Google Scholar 

  100. B. Cockeram, H. A. Lipsitt, R. Srinivasan and I. Weiss,Scripta Metall. Mater.,25, 2109 (1991).

    Article  CAS  Google Scholar 

  101. M. G. Mendiratta, J. J. Lewandowski and D. M. Dimiduk,Metall. Trans.,22A, 1573 (1991).

    CAS  Google Scholar 

  102. C. -P. Reip and G. Sauthoff,Intermetallics 1, 159 (1993).

    Article  CAS  Google Scholar 

  103. M. G. Hebsur, I. E. Locci, S. V. Raj and M. V. Nathal,J. Mater. Res.,1, 1696 (1992).

    Article  ADS  Google Scholar 

  104. P. R. Subramanian and J. P. Simmons,Scripta Metall. Mater.,25, 231 (1991).

    Article  CAS  Google Scholar 

  105. S. Zhang and D. E. Mikkola,Scripta Metall. Mater.,26, 1315 (1992).

    Article  CAS  Google Scholar 

  106. J. Y. Park, M. H. Oh, D. M. Wee, S. Miura and T. Mishima,Korean J. Mater. Res.,4, 906 (1994).

    CAS  Google Scholar 

  107. S. Biswas and R. A. Varin,Metall. Mater. Trans.,27A, 5 (1996).

    Article  CAS  Google Scholar 

  108. S. Biswas and R. A. Varin,Metall. Mater. Trans.,27A, 71 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, W.S., Muddle, B.C. Trialuminide intermetallic alloys for elevated temperature applications—overview. Metals and Materials 3, 1–15 (1997). https://doi.org/10.1007/BF03026100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026100

Keywords

Navigation