Skip to main content
Log in

(−)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesisvia decreased MITF production

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, the effects of (−)-epigallocatechin-3-gallate (EGCG) and/or hinokitiol (β-thujaplicin) on melanogenesis were investigated. Our results showed that both EGCG and hinokitiol significantly inhibited melanin synthesis in a concentration-dependent manner, and that their hypopigmenting effects were stronger than that of kojic acid, which is known to inhibit melanin formation in melanocytes and melanoma cells. Interestingly, EGCG did not show any additive hypopigmenting effect in combination with kojic acid, though EGCG did show a synergistic effect in combination with hinokitiol. Several reports indicate that the activation of extracellular signal-regulated kinase (ERK) induces microphthalmia-associated transcription factor (MITF) degradation. Accordingly, the effects of EGCG and hinokitiol on the ERK signaling pathway were examined. EGCG and hinokitiol induced neither ERK activation nor MITF degradation. On the other hand, both EGCG and hinokitiol reduced the protein levels of MITF and of tyrosinase, the rate limiting melanogenic enzyme, whereas kojic acid had no effect. In addition, hinokitiol strongly downregulated the activity of tyrosinase, whereas EGCG or kojic acid had only a little effect. These results show that both EGCG and hinokitiol reduce MITF production, and suggest that reduced tyrosinase activity by hinokitiol explains their synergistic effect on melanogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arima, Y., Nakai, Y., Hayakawa, R., and Nishino, T., Antibacterial effect of beta-thujaplicin on staphylococci isolated from atopic dermatitis: relationship between changes in the number of viable bacterial cells and clinical improvement in an eczematous lesion of atopic dermatitis.J. Antimicrob Chemother., 51, 113–122 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Bentley, N. J., Eisen, T., and Goding, C. R., Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator.Mol. Cell Biol., 14, 7996–8006 (1994).

    PubMed  CAS  Google Scholar 

  • Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J. P., and Ballotti, R., Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes.J. Cell Biol., 142, 827–835 (1998a).

    Article  CAS  Google Scholar 

  • Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J. P., and Ballotti, R., Differentcis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia.Mol. Cell Biol., 18, 694–702 (1998b).

    CAS  Google Scholar 

  • Busca, R. and Ballotti, R., Cyclic AMP a key messenger in the regulation of skin pigmentation.Pigment. Cell Res., 13, 60–69 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J., Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells.Cell, 77, 841–852 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Dooley, T. P., Gadwood, R. C., Kilgore, K., and Thomasco, L. M., Development of anin vitro primary screen for skin depigmenta-tion and antimelanoma agents.Skin Pharmacol, 7, 188–200 (1994).

    PubMed  CAS  Google Scholar 

  • Englaro, W., Bertolotto, C., Busca, R., Brunet, A., Pages, G., Ortonne, J. P., and Ballotti, R., Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentia-tion.J. Biol. Chem., 273, 9966–9970 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hearing, V. J. and Jimenez, M., Analysis of mammalian pigmenta-tion at the molecular level.Pigment. Cell Res., 2, 75–85 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Hearing, V. J. and Tsukamoto, K., Enzymatic control of pigmenta-tion in mammals.FASEB J., 5, 2902–2909 (1991).

    PubMed  CAS  Google Scholar 

  • Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T. and Fisher, D. E., MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes.Nature, 391, 298–301 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., and Arnheiter, H., Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein.Cell, 74, 395–404 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. E., Newton, V. E., Liu, X. Z., and Read, A. P., A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chro-mosome 3p12–p14.1.Nat. Genet., 7, 509–512 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Katiyar, S. K., Afaq, F., Azizuddin, K., and Mukhtar, H., Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate.Toxicol. Appl. Pharmacol., 176, 110–117 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Khaled, M., Larribere, L., Bille, K., Aberdam, E., Ortonne, J. P., Ballotti, R., and Bertolotto, C., Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis.J. Biol. Chem., 277, 33690–36907 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. S., Hwang, E. S., Lee, J. E., Kim, S. Y., Kwon, S. B., and Park, K. C., Sphingosine-1-phosphate decreases melanin synthesisvia sustained ERK activation and subsequent MITF degradation.J. Cell Sci., 116, 1699–1706 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. S., Kim, S. Y., Chung, J. H., Kim, K. H., Eun, H. C., and Park, K. C., Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes.Cell Signal., 14, 779–785 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Urabe, K., Winder, A., Jimenez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., Garcia-Borron, J. C., and Hearing, V. J., Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis.EMBO J., 13, 5818–5825 (1994).

    PubMed  CAS  Google Scholar 

  • Marshall, C. J., Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.Cell, 80, 179–185 (1995).

    Article  PubMed  CAS  Google Scholar 

  • No, J. K., Soung, D. Y., Kim, Y. J., Shim, K. H., Jun, Y. S., Rhee, S. H., Yokozawa, T., and Chung, H. Y., Inhibition of tyrosinase by green tea components.Life Sci., 65, PL241-PL246 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Oka, M., Nagai, H., Ando, H., Fukunaga, M., Matsumura, M., Araki, K., Ogawa, W., Miki, T., Sakaue, M., Tsukamoto, K., Konishi, H., Kikkawa, U., and Ichihashi, M., Regulation of melano-genesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells.J. Invest Dermatol, 115, 699–703 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Price, E. R., Horstmann, M. A., Wells, A. G., Weilbaecher, K. N., Takemoto, C. M., Landis, M. W., and Fisher, D. E., alpha-Melanocyte-stimulating hormone signaling regulates ex-pression of micro-phthalmia, a gene deficient in Waarden-burg syndrome.J. Biol. Chem., 273, 33042–33047 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, K., Ogawa, M., Sugibayashi, K., Yamada, K., and Yamamoto, K., Relationship between tyrosinase inhibitory action and oxidation-reduction potential of cosmetic whitening ingredients and phenol derivatives.Arch. Pharm. Res., 22, 335–339 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sale, E. M., Atkinson, P. G., and Sale, G. J., Requirement of MAP kinase for differentiation of fibroblasts to adipocytes, for insulin activation of p90 S6 kinase and for insulin or serum stimulation of DNA synthesis.EMBO J., 14, 674–684 (1995).

    PubMed  CAS  Google Scholar 

  • Steingrimsson, E., Moore, K. J., Lamoreux, M. L., Ferre- D’Amare, A. R., Burley, S. K., Zimring, D. C., Skow, L. C., Hodgkinson, C. A., Arnheiter, H., and Copeland, N. G.etal., Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences.Nat. Genet., 8, 256–263 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, M., Evidence to suggest that expression of MITF induces melanocyte differentiation and haploinsufficiency of MITF causes Waardenburg syndrome type 2A.Pigment. Cell Res., 10, 25–33 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, M., MITF: a stream flowing for pigment cells.Pigment. Cell Res., 13, 230–40 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Tassabehji, M., Newton, V. E., and Read, A. P., Waardenburg syndrome type 2 caused by mutations in the human micro-phthalmia (MITF) gene.Nat. Genet., 8, 251–255 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, T., Kondoh, H., Hiratsuka, J. and Mishima, Y., Enhanced melanogenesis induced by tyrosinase gene-transfer in-creases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma.Pigment. Cell Res., 11, 275–282 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wu, M., Hemesath, T. J., Takemoto, C. M., Horstmann, M. A., Wells, A. G., Price, E. R., Fisher, D. Z., and Fisher, D. E., c- Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi.Genes Dev., 14, 301–312 (2000).

    PubMed  CAS  Google Scholar 

  • Xu, W., Gong, L., Haddad, M. M., Bischof, O., Campisi, J., Yeh, E. T., and Medrano, E. E., Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9.Exp. Cell Res., 255, 135–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Yasumoto, K., Yokoyama, K., Takahashi, K., Tomita, Y., and Shibahara, S., Functional analysis of microphthalmia-as-sociated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes.J. Biol. Chem., 272, 503–509 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Yavuzer, U., Keenan, E., Lowings, P., Vachtenheim, J., Currie, G., and Goding, C. R., The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription.Oncogene, 10, 123–134 (1995).

    PubMed  CAS  Google Scholar 

  • Yokoyama, K., Suzuki, H., Yasumoto, K., Tomita, Y., and Shibahara, S., Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/ tyrosinase-related protein-2.Biochim. Biophys. Acta, 1217, 317–321 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Chan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DS., Park, SH., Kwon, SB. et al. (−)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesisvia decreased MITF production. Arch Pharm Res 27, 334–339 (2004). https://doi.org/10.1007/BF02980069

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980069

Key words

Navigation