Skip to main content
Log in

Stein estimation—A review

  • Survey Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper presents an expository development of Stein estimation in several distribution families. Considered are both the point estimation and confidence interval cases. Specific results for linear regression models are added. Emphasis is laid on the chronological history and on recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner, D.J. and Judge, G.G. (1977). Application of pre-test and Stein estimators to economic data.Econometrica 45, 1279–1288.

    MATH  Google Scholar 

  • Alam, K. (1973). A family of admissible minimax estimators of the mean of a multivariate normal distribution.Ann. Statist. 1, 517–525.

    MathSciNet  MATH  Google Scholar 

  • Alam, K. (1979). Estimation of multinomial probabilities.Ann. Statist. 7, 282–283.

    MathSciNet  MATH  Google Scholar 

  • Baranchik, A.J. (1964). Multiple regression and estimation of the mean of a multivariate normal distribution. Technical Report 51, Dept. Statistics, Stanford, Univ.

  • Baranchik, A.J. (1970). A family of minimax estimators of the mean of a multivariate normal distribution.Ann. Math. Statist. 41, 642–645.

    MathSciNet  Google Scholar 

  • Berger, J.O. (1976). Admissible minimax estimation of multivariate normal mean with arbitrary quadratic loss.Ann. Statist. 4, 223–226.

    MathSciNet  MATH  Google Scholar 

  • Berger, J.O. (1980). Improving on inadmissible estimators in continuous exponential families with applications to simultaneous estimation of gamma scale parameters.Ann. Statist. 8, 545–571.

    MathSciNet  MATH  Google Scholar 

  • Berger, J.O. and Srinivasan, C. (1978). Generalized Bayes estimators in multivariate problems.Ann. Statist. 6, 783–801.

    MathSciNet  MATH  Google Scholar 

  • Berry, J.C. (1994). Improving the James-Stein estimator using the Stein variance estimator.Statistics and Probability Letters 20, 241–245.

    MathSciNet  MATH  Google Scholar 

  • Brandwein, A.C. (1979). Minimax estimation of the mean of spherically symmetric distributions under general quadratic loss.J. Multiv. Anal. 9, 579–588.

    MathSciNet  MATH  Google Scholar 

  • Brandwein, A.C. and Strawderman, W.E. (1990). Stein estimation: The spherically symmetric case.Statist. Sci. 5, 356–369.

    MathSciNet  MATH  Google Scholar 

  • Brandwein, A.C. and Strawderman, W.E. (1991). Generalizations of James-Stein estimators under spherical symmetry.Ann. Statist. 19, 1639–1650.

    MathSciNet  MATH  Google Scholar 

  • Brandwein, A.C., Ralescu, S. and Strawderman, W.E. (1993). Shrinkage estimators of the location parameter for certain spherically symmetric distributions.Ann. Inst. Statist. Math. 45, 551–565.

    MathSciNet  MATH  Google Scholar 

  • Brewster, J.F. and Zidek, J.V. (1974). Improving on equivariant estimators.Ann. Statist. 2, 21–38.

    MathSciNet  MATH  Google Scholar 

  • Brown, L.D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters.Ann. Math. Statist. 39, 29–48.

    MathSciNet  MATH  Google Scholar 

  • Brown, L.D. (1971). Admissible estimators, recurrent diffusions and insoluble boundary value problems.Ann. Math. Statist. 42, 855–903.

    MathSciNet  MATH  Google Scholar 

  • Brown, L.D. and Hwang, J.T. (1989). Universal domination and stochastic domination: U-admissibility and U-inadmissibility of the least squares estimators.Ann. Statist. 17, 252–267.

    MathSciNet  MATH  Google Scholar 

  • Cellier, D. and Fourdrinier, D. (1995). Shrinkage estimators under spherical symmetry for the general linear model.J. Multiv. Anal. 52, 338–351.

    MathSciNet  MATH  Google Scholar 

  • Cellier, D., Fourdrinier, D. and Robert, C. (1989). Robust shrinkage estimators of the location parameter for elliptically symmetric distributions.J. Multiv. Anal. 29, 39–52.

    MathSciNet  MATH  Google Scholar 

  • Cellier, D., Fourdrinier, D. and Strawderman, W.E. (1995). Shrinkage positive rule estimators for spherically symmetric distributions.J. Multiv. Anal. 53, 194–209.

    MathSciNet  MATH  Google Scholar 

  • Chang, C.H., Lin, J.J. and Pal, N. (1993). Improvements over the James-Stein estimator: A risk analysis.J. Statist. Comp. and Simul. 48, 117–126.

    MathSciNet  MATH  Google Scholar 

  • Chaturvedi, A. and Srivastava, A.K. (1992). Families of minimax estimators in linear regression model.Sankhya, Series B,54, 278–288.

    MathSciNet  MATH  Google Scholar 

  • Chaturvedi, A. and Wan, A.T.K. (1998). Stein-rule estimation in a dynamic linear model.J. Appl. Statist. Sci. 7, 17–25.

    MathSciNet  MATH  Google Scholar 

  • Chung, Y., Kim, C. and Dey, D.K. (1994). Simultaneous estimation of Poisson means under weighted entropy loss.Calcutta Statist. Assoc. Bull. 44, 165–176.

    MathSciNet  MATH  Google Scholar 

  • Clevenson, M.L. and Zidek, J.V. (1975). Simultaneous estimation of the means of independent Poisson laws.J. Amer. Statist. Assoc. 70, 698–705.

    MathSciNet  Google Scholar 

  • Cohen, A. (1972). Improved confidence intervals for the variance of a normal distribution.J. Amer. Statist. Assoc. 67, 382–387.

    MathSciNet  MATH  Google Scholar 

  • DasGupta, A. (1986). Simultaneous estimation in the multiparameter gamma distribution under weighted quadratic losses.Ann. Statist. 14, 206–219.

    MathSciNet  MATH  Google Scholar 

  • DasGupta, A. and Sinha, B.K. (1999). A new general interpretation of the Stein estimate and how it adapts: Applications.J. Statist. Plann. Inference 75, 247–268.

    MathSciNet  MATH  Google Scholar 

  • Dey, D.K. and Chung, Y. (1992). Compound Poisson distributions: Properties and estimations.Communications in Statistics 21, 3097–3122.

    MathSciNet  MATH  Google Scholar 

  • Donoho, D.L. and Johnstone, I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage.J. Amer. Statist. Assoc. 90, 1200–1224.

    MathSciNet  MATH  Google Scholar 

  • Fay, R.E. and Herriot, R.A. (1979). Estimates of income for small places: An application of James-Stein procedures to census data.J. Amer. Statist. Assoc. 74, 269–277.

    MathSciNet  Google Scholar 

  • Fourdrinier, D. and Strawderman, W.E. (1996). A paradox concerning shrinkage estimators: Should a known scale parameter be replaced by an estimated value in the shrinkage factor?J. Multiv. Anal. 59, 109–140.

    MathSciNet  MATH  Google Scholar 

  • Fourdrinier, D. and Wells, M.T. (1995). Estimation of a loss function for spherically symmetric distributions in the general model.Ann. Statist. 23, 571–592.

    MathSciNet  MATH  Google Scholar 

  • Fourdrinier, D., Strawderman, W.E. and Wells, M.T. (1998). On the construction of Bayes minimax estimators.Ann. Statist. 26, 660–671.

    MathSciNet  MATH  Google Scholar 

  • Gauss, C.F. (1809). Theoria motus corporum coelestium. Werke, liber II, sectio III, 240–244.

  • George, E.I. (1990). Comment on “Decision theoretic variance estimation”, by Maatta and Casella.Statist. Sci. 5, 107–109.

    Google Scholar 

  • Ghosh, M. (1994). On some Bayesian solutions of the Neyman-Scott problem. InStatistical Decision Theory and Related Topics V, Springer-Verlag, New York, pp. 267–276.

    Google Scholar 

  • Ghosh, M. and Parsian, A. (1980). Admissible and minimax multiparameter estimation in exponential families.J. Multiv. Anal. 10, 551–564.

    MathSciNet  MATH  Google Scholar 

  • Ghosh, M., Hwang, J.T. and Tsui, K.W. (1983). Construction of improved estimators in multiparameter estimation for discrete exponential families (with discussion).Ann. Statist. 11, 351–376.

    MathSciNet  MATH  Google Scholar 

  • Ghosh, M., Hwang, J.T. and Tsui, K.W. (1984). Construction of improved estimators in multiparameter estimation for continuous exponential families.J. Multiv. Anal. 14, 212–220.

    MathSciNet  MATH  Google Scholar 

  • Giles, J.A. and Giles, D.E.A. (1993). Preliminary test estimation of the regression scale parameter when the loss function is asymmetric.Communications in Statistics-Theory and Methods 22, 1709–1733.

    MathSciNet  MATH  Google Scholar 

  • Giles, J.A., Giles, D.E.A. and Ohtani, K. (1996). The exact risk of some pre-test and Stein type regression estimators under balanced loss.Communications in Statistics-Theory and Methods 25, 2901–2924.

    MathSciNet  MATH  Google Scholar 

  • Girshick, M.A. and Savage, L.J. (1951). Bayes and minimax estimates for quadratic loss functions. InProc. Second Berkeley Symp. Math. Statist. Probab. 53–73.

  • Gotway, C.A. and Cressie, N. (1993). Improved multivariate prediction under a general linear model.J. Multiv. Anal. 45, 56–72.

    MathSciNet  MATH  Google Scholar 

  • Goutis, C. and Casella, G. (1991). Improved invariant confidence intervals for a normal variance.Ann. Statist. 19, 2015–2031.

    MathSciNet  MATH  Google Scholar 

  • Green, E. and Strawderman, W.E. (1986). Stein rule estimation of coefficients for 18 eastern hardwood cubic volume equations.Canad. J. Forest Resources 16, 249–255.

    Google Scholar 

  • Green, E. and Strawderman, W.E. (1991). A James-Stein type estimator for combining unbiased and possibly biased estimators.J. Amer. Statist. Assoc. 86, 1001–1006.

    MathSciNet  MATH  Google Scholar 

  • Gruber, M.H.J. (1998).Improving efficiency by shrinkage. Marcel Dekker, Inc., New York.

    MATH  Google Scholar 

  • Guo, Y.Y. and Pal, N. (1992). A sequence of improvements over the James-Stein estimator.J. Multiv. Anal. 42, 302–317.

    MathSciNet  MATH  Google Scholar 

  • Gupta, A.K. and Pena, E.A. (1991). A simple motivation for James-Stein estimators.Statistics and Probability Letters 12, 337–340.

    MathSciNet  MATH  Google Scholar 

  • He, K. (1992). Parametric empirical Bayes confidence intervals based on James-Stein estimators.Statistics and Decisions 10, 121–132.

    MathSciNet  MATH  Google Scholar 

  • Hébel, P., Faivre, R., Goffinet, B. and Wallach, D. (1993). Shrinkage estimators applied to prediction of French winter wheat yield.Biometrics 49, 281–293.

    Google Scholar 

  • Hodges, J.L. and Lehmann, E.L. (1950). Some problems in minimax point estimation.Ann. Math. Statist. 21, 187–197.

    MathSciNet  Google Scholar 

  • Hoffmann, K. (1992).Improved estimation of distribution parameters: Stein-type estimators. Teubner, Leipzig (Teubner-Texte zur Mathematik, Bd. 128).

    MATH  Google Scholar 

  • Hoffmann, K. (1993). Generalized Bayes Stein-type estimators for regression parameters under linear constraints.J. Multiv. Anal. 46, 120–130.

    MATH  Google Scholar 

  • Hoffmann, K. (1997). An empirical Bayes Stein-type estimator for regression parameters under linear constraints.Statistics 30, 91–98.

    MathSciNet  MATH  Google Scholar 

  • Hudson, H.M. (1974). Empirical Bayes estimation. Technical Report. 58, Dept. Statistics, Stanford, Univ.

  • Hudson, H.M. (1978). A natural identity for exponential families with applications in multivariate estimation.Ann. Statist. 6, 473–484.

    MathSciNet  MATH  Google Scholar 

  • Hwang, J.T. (1982). Improving upon standard estimators in discrete exponential families with applications to Poisson and negative binomial cases.Ann. Statist. 10, 857–867.

    MathSciNet  MATH  Google Scholar 

  • Hwang, J.T. (1985). Universal domination and stochastic domination: Estimation simultaneously under a broad class of loss functions.Ann. Statist. 13, 295–314.

    MathSciNet  MATH  Google Scholar 

  • Hwang, J.T. and Casella, G. (1982). Minimax confidence sets for the mean of a multivariate normal distribution.Ann. Statist. 10, 868–881.

    MathSciNet  MATH  Google Scholar 

  • Hwang, J.T. and Casella, G. (1984). Improved set estimators for a multivariate normal mean.Statist. Decisions Suppl. 1, 3–16.

    MathSciNet  Google Scholar 

  • Hwang, J.T. and Ullah, A. (1994). Confidence sets centered at James-Stein estimators.J. Econometrics 60, 145–156.

    MathSciNet  MATH  Google Scholar 

  • Iliopoulos, G. and Kourouklis, S. (1998). On improved interval estimation for the generalized variance.J. Statist. Plann. Inference 66, 305–320.

    MathSciNet  MATH  Google Scholar 

  • James, W. and Stein, C. (1961). Estimation with quadratic loss.Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1, 361–380.

    MathSciNet  Google Scholar 

  • Johnson, B.M. (1971). On the admissible estimators for certain fixed sample binomial problems.Ann. Math. Statist. 42, 1579–1587.

    MathSciNet  MATH  Google Scholar 

  • Johnstone, I.M. (1988). On inadmissibility of some unbiased estimates of loss. InStatistical Decision Theory and Related Topics IV, eds. S.S. Gupta and J.O. Berger, Springer-Verlag, New York, pp. 361–379.

    Google Scholar 

  • Judge, G. and Bock, M.E. (1978).The Statistical Implication of Pretest and Stein Rule Estimators in Econometrics. North Holland, Amsterdam.

    Google Scholar 

  • Krishnamoorthy, K. and Sarkar, S.K. (1993). Simultaneous estimation of independent normal mean vectors with unknown covariance matrices.J. Multiv. Anal. 47, 329–338.

    MathSciNet  MATH  Google Scholar 

  • Kubokawa, T. (1991). An approach to improving the James-Stein estimator.J. Multiv. Anal. 36, 121–126.

    MathSciNet  MATH  Google Scholar 

  • Kubokawa, T. (1994). A unified approach to improving equivariant estimators.Ann. Statist. 22, 290–299.

    MathSciNet  MATH  Google Scholar 

  • Kubokawa, T. and Konno, Y. (1990). Estimating the covariance matrix and the generalized variance under the symmetric loss.Ann. Inst. Statist. Math. 42, 331–343.

    MathSciNet  MATH  Google Scholar 

  • Kubokawa, T., Morita, K., Makita, S. and Nagakura, K. (1993). Estimation of the variance and its applications.J. Statist. Plann. Inference 35, 319–333.

    MathSciNet  MATH  Google Scholar 

  • Landsman, W.R. and Damodaran, A. (1989). Using shrinkage estimators to improve upon time series model proxies for security market’s expectation of earnings.J. Accounting Research 27, 97–115.

    Google Scholar 

  • Lele, C. (1992). Inadmissibility of loss estimators.Statistics and Decisions 10, 309–322.

    MathSciNet  MATH  Google Scholar 

  • Li, T.F. and Bhoj, D.S. (1991). Bayes minimax estimators of a multivariate normal mean.Statistics and Probability Letters 11, 373–377.

    MathSciNet  MATH  Google Scholar 

  • Lin, J.J., Pal, N. and Chang, C.H. (1997). Applications of improved variance estimators in a multivariate normal mean vector estimation.Statistics 30, 99–125.

    MathSciNet  MATH  Google Scholar 

  • Maatta, J.M. and Casella G. (1990). Developments in decision-theoretic variance estimation.Statist. Sci. 5, 90–120.

    MathSciNet  MATH  Google Scholar 

  • Maruyama, Y. (1998a). A unified and broadend class of admissible minimax estimators of a multivariate normal mean.J. Multiv. Anal. 64, 196–205.

    MathSciNet  MATH  Google Scholar 

  • Maruyama, Y. (1998b). Minimax estimators of a normal variance.Metrika 48, 209–214.

    MathSciNet  MATH  Google Scholar 

  • Matsumura, E.M. and Tsui, K.W. (1982). Stein-type Poisson estimators in audit sampling.J. Accounting Research 20, 162–170.

    Google Scholar 

  • Nagata, Y. (1996). The Neyman accuracy and the Wolfowitz accuracy of the Stein type confidence interval for the disturbance variance.Commun. Statist.-Theory Meth. 25, 985–1004.

    MathSciNet  MATH  Google Scholar 

  • Nagata, Y. (1997). Stein type confidence interval of the disturbance variance in a linear regression model with multivariate Student-t distributed errors.Commun. Statist.-Theory Meth. 26, 503–523.

    MathSciNet  MATH  Google Scholar 

  • Ohtani, K. (1995). Generalized ridge regression estimators under the LINEX loss function.Statistical Papers 36, 99–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Ohtani, K. (1996). Further improving the Stein-rule estimator using the Stein variance estimator in a misspecified linear regression model.Statistics and Probability Letters 29, 191–199.

    MathSciNet  MATH  Google Scholar 

  • Ohtani, K. (1998). The exact risk of a weighted average estimator of the OLS and Stein-rule estimators in regression under balanced loss.Statistics and Decisions 16, 35–45.

    MathSciNet  MATH  Google Scholar 

  • Ohtani, K. and Kozumi, H. (1996). The exact general formulae for the moments and the MSE dominance of the Stein-rule and positive-part Stein-rule estimators.J. Econometrics 74, 273–287.

    MathSciNet  MATH  Google Scholar 

  • Oman, S.D. (1991). Random calibration with many measurements: An application of Stein estimation.Technometrics 33, 187–195.

    Google Scholar 

  • Pal, N. and Chang, C.H. (1996). Risk analysis and robustness of four shrinkage estimators.Calcutta Statist. Assoc. Bull. 46, 35–62.

    MathSciNet  MATH  Google Scholar 

  • Pal, N. and Elfessi, A. (1995). Improved estimation of a multivariate normal mean vector and the dispersion matrix: How one affects the other.Sankhya, Series A 57, 267–286.

    MathSciNet  MATH  Google Scholar 

  • Pal, N. and Lin, J.J. (1997). Estimators which are uniformly better than the James-Stein estimator.Calcutta Statist. Assoc. Bull. 47, 167–179.

    MathSciNet  MATH  Google Scholar 

  • Pal, N. and Sinha, B.K. (1996). Estimation of a common mean of several normal populations: A review.Far East J. Math. Sci., Special Volume, Part I, 97–110.

    MathSciNet  Google Scholar 

  • Pal, N., Sinha, B.K., Chaudhuri, G. and Chang, C.H. (1995). Estimation of a multivariate normal mean vector and local improvements.Statistics 26, 1–17.

    MathSciNet  MATH  Google Scholar 

  • Peng, J.C.M. (1975). Simultaneous estimation of the parameters of independent Poisson distributions. Technical Report 78, Dept. Statistics, Stanford, Univ.

  • Proskin, H.M. (1985). An admissibility theorem with applications to the estimation of the variance of the normal distribution. Ph.D. dissertation, Dept. Statistics, Rutgers Univ.

  • Rolph, J.E., Chaiken, J.M. and Houchens, R.L. (1981). Methods for estimating crime rates of individuals. The Rand Corporation, R-2730-NIJ.

  • Sarkar, S.K. (1989). On improving the shortest length confidence interval for the generalized variance.J. Multiv. Anal. 31, 136–147.

    MATH  Google Scholar 

  • Sarkar, S.K. (1991). Stein-type improvements of confidence intervals for the generalized variance.Ann. Inst. Statist. Math. 43, 369–375.

    MathSciNet  MATH  Google Scholar 

  • Shao, P.Y.S. and Strawderman, W.E. (1994). Improving on the James-Stein positive-part estimator.Ann. Statist. 22, 1517–1538.

    MathSciNet  MATH  Google Scholar 

  • Shinozaki, N. and Chang, Y.T. (1996). Minimaxity of empirical Bayes estimators shrinking toward the grand mean when variances are unequal.Commun. Statist.-Theory Meth. 25, 183–199.

    MathSciNet  MATH  Google Scholar 

  • Shorrock, G. (1990). Improved confidence intervals for a normal variance.Ann. Statist. 18, 972–980.

    MathSciNet  MATH  Google Scholar 

  • Shorrock, R.W. and Zidek, J.V. (1976). An improved estimator of the generalized variance.Ann. Statist. 4, 629–638.

    MathSciNet  MATH  Google Scholar 

  • Singh, R.S. (1991). James-Stein rule estimators in linear regression models with multivariate-t distributed error.Austral. J. Statist. 33, 145–158.

    MathSciNet  MATH  Google Scholar 

  • Sinha, B.K. (1976). On improved estimators of the generalized variance.J. Multiv. Anal. 6, 617–625.

    MATH  Google Scholar 

  • Srivastava, A.K. and Shalabh (1997). A new property of Stein procedure in measurement error model.Statistics and Probability Letters 32, 231–234.

    MathSciNet  MATH  Google Scholar 

  • Srivastava, A.K. and Srivastava, V.K. (1993). Pitman closeness for Stein-rule estimators of regression coefficients.Statistics and Probability Letters 18, 85–89.

    MathSciNet  Google Scholar 

  • Stein, C. (1956). Inadmissibility of the usual estimator of the mean of a multivariate normal distribution. InProc. Third Berkeley Symp. Math. Statist. Probab. 1, 197–206.

  • Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean.Ann. Inst. Statist. Math. 16, 155–160.

    MathSciNet  Google Scholar 

  • Stein, C. (1973). Estimation of the mean of a multivariate normal distribution. InProceedings, Prague Symp. on Asymptotic Statistics, pp. 345–381.

  • Stein, C. (1981). Estimation of the mean of a multivariate normal distribution.Ann. Statist. 9, 1135–1151.

    MathSciNet  MATH  Google Scholar 

  • Strawderman, W.E. (1971). Proper Bayes minimax estimators of multivariate normal mean.Ann. Statist. 42, 385–388.

    MathSciNet  MATH  Google Scholar 

  • Sugiura, N. and Takagi, Y. (1996). Dominating James-Stein positive-part estimator for normal mean with unknown covariance matrix.Commun. Statist.-Theory Meth. 25, 2875–2900.

    MathSciNet  MATH  Google Scholar 

  • Sun, L. (1995). Risk ratio and minimaxity in estimating the multivariate normal mean with unknown variance.Scand. J. Statist. 22, 105–120.

    MathSciNet  MATH  Google Scholar 

  • Takada, Y. (1998). Asymptotic improvement of the usual confidence set in a multivariate normal distribution with unknown variance.J. Multiv. Anal. 64, 118–130.

    MathSciNet  MATH  Google Scholar 

  • Tan, M. and Gleser, J. (1992). Minimax estimators for location vectors in elliptical distributions with unknown scale parameter and its application to variance reduction in simulation.Ann. Inst. Statist. Math. 44, 537–550.

    MathSciNet  MATH  Google Scholar 

  • Tate, R.F. and Klett, G.W. (1959). Optimal confidence intervals for the variance of a normal distribution.J. Amer. Statist. Assoc. 54, 674–682.

    MathSciNet  MATH  Google Scholar 

  • Tsui, K.W. (1979). Multiparameter estimation of discrete exponential distributions.Canad. J. Statist. 7, 193–200.

    MathSciNet  MATH  Google Scholar 

  • Tsui, K. W. (1984). Robustness of Clevenson-Zidek type estimators.J. Amer. Statist. Assoc. 79, 152–157.

    MathSciNet  MATH  Google Scholar 

  • Tsui, K.W. (1986). Further developments on the robustness of Clevenson-Zidek type means estimators.J. Amer. Statist. Assoc. 81, 176–180.

    MathSciNet  MATH  Google Scholar 

  • Tsui, K.W. and Press, S.K. (1982). Simultaneous estimation of several Poisson parameters under K-normalized squared error loss.Ann. Statist. 10, 93–100.

    MathSciNet  MATH  Google Scholar 

  • Ullah, A. and Ullah, S. (1978). Double k-class estimators of coefficients in linear regression.Econometrica 46, 705–722.

    MathSciNet  MATH  Google Scholar 

  • Vinod, H.D. (1980). Improved Stein-rule estimator for regression problems.J. Econometrics 12, 143–150.

    MATH  Google Scholar 

  • Zellner, A. (1994). Bayesian and non-Bayesian estimation using balanced loss functions. InStatistical Decision Theory and Related Topics V, eds. S.S. Gupta and J.O. Berger, Springer-Verlag, New York, pp. 377–390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, K. Stein estimation—A review. Statistical Papers 41, 127–158 (2000). https://doi.org/10.1007/BF02926100

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02926100

Key words

Navigation