Skip to main content
Log in

Basic concepts of group sequential and adaptive group sequential test procedures

  • Survey Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Based on the concept of repeated significance tests, an empirical study may be planned in subsequent stages. Group sequential test procedures offer the possibility of performing the study with a fixed number of observations per stage. At least, the number of observations must be chosen independently of the observed data. In adaptive group sequential test procedures, the number of observations can be changed during the course of the study using all results observed so far. In this article, the basic concepts of these two designs are reviewed. Recent developments in adaptive designs are outlined and potential fields of application are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage, P. (1975).Sequential Medical Trials. Blackwell, Oxford, second edition.

    Google Scholar 

  • Armitage, P., McPherson, C. K., Rowe, B. C. (1969). Repeated significance tests on accumulating data.J. Roy. Stat. Soc. A 132, 235–244.

    Article  MathSciNet  Google Scholar 

  • Banik, N., Köhne, K., Bauer, P. (1996). On the power of Fisher’s combination test for two stage sampling in the presence of nuisance parameters.Biometrical J. 38, 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Bauer, P., Budde, M. (1998). A simulation program for adaptive two-stage designs.Computational Statistics & Data Analysis 26, 351–371.

    Article  MATH  Google Scholar 

  • Bauer, P. (1989a). Multistage testing with adaptive designs.Biom. und Inform. in Med. und Biol. 20, 130–148.

    Google Scholar 

  • Bauer, P. (1989b). Sequential tests of hypotheses in consecutive trials.Biometrical J. 31, 663–676.

    MathSciNet  Google Scholar 

  • Bauer, P. (1992). The choice of sequential boundaries based on the concept of power spending.Biom. und Inform. in Med. und Biol. 23, 3–15.

    Google Scholar 

  • Bauer, P., Kieser, M. (1999). Combining different phases in the development of medical treatments within a single trial.Statistics in Medicine 18, 1833–1848.

    Article  Google Scholar 

  • Bauer, P., Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses.Biometrics 50, 1029–1041.

    Article  MATH  Google Scholar 

  • Bauer, P., Röhmel, J. (1995). An adaptive method for establishing a dose-response relationship.Statistics in Medicine 14, 1595–1607.

    Article  Google Scholar 

  • Bauer, P., Scheiber, V., Wohlzogen, F. X. (1986).Sequentielle statistische Verfahren. Gustav Fisher Verlag, Stuttgart.

    MATH  Google Scholar 

  • Birkett, M. A., Day, S. J. (1994). Internal pilot studies for estimating sample size.Statistics in Medicine 13, 2455–2463.

    Article  Google Scholar 

  • Brannath, W., Posch, M., Bauer, P. (1999). Recursive combination tests.Submitted.

  • Brittain, E. H., Bailey, K. R. (1993). Optimization of multistage testing times and critical values in clinical trials.Biometrics 49, 763–772.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, M. N., Hwang, I. K., Shih, W. J. (1998). Group sequential designs using both type I and type II error probability spending functions.Comm. Stat.—Theory Meth. 27, 1323–1339.

    Article  MATH  Google Scholar 

  • Chi, G. Y. H., Liu, Q. (1999). The attractiveness of the concept of a prospectively designed two-stage clinical trial.Journal of Biopharmaceutical Statistics 9, 537–547.

    Article  MATH  Google Scholar 

  • Cui, L., Hung, H. M. J., Wang, S.-J. (1999). Modification of sample size in group sequential clinical trials.Biometrics 55, 853–857.

    Article  MATH  Google Scholar 

  • DeMets, D. L., Ware, J. H. (1980). Group sequential methods for clinical trials with a one-sided hypothesis.Biometrika 67, 651–660.

    Article  MathSciNet  Google Scholar 

  • DeMets, D. L., Ware, J. H. (1982). Asymmetric group sequential boundaries for monitoring clinical trials.Biometrika 69, 661–663.

    Article  Google Scholar 

  • Dodge, H. F., Romig, H. G. (1929). A method of sampling inspection.Bell. System Technical J. 8, 613–631.

    Google Scholar 

  • Emerson, S. S. (1996). Statistical packages for group sequential methods.The American Statistician 50, 183–192.

    Article  Google Scholar 

  • Emerson, S. S., Fleming, T. R. (1989). Symmetric group sequential test designs.Biometrics 45, 905–923.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, L. D. (1998). Self-designing clinical trials.Statistics in Medicine 17, 1551–1562.

    Article  Google Scholar 

  • Fleming, T. R., Harrington, D. P., O’Brien, P. C. (1984). Designs for group sequential trials.Contr. Clin. Trials 5, 348–361.

    Article  Google Scholar 

  • Follmann, D. A., Proschan, M. A., Geller, N. L. (1994). Monitoring pairwise comparisons in multi-armed clinical trials.Biometrics 50, 325–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, B. K. (1970).Sequential Tests of Statistical Hypotheses. Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  • Gould, A. L. (1992). Interim analysis for monitoring clinical trials that do not materially affect the type I error rate.Statistics in Medicine 11, 53–66.

    Article  Google Scholar 

  • Gould, A. L. (1995). Planning and revising the sample size for a trial.Statistics in Medicine 14, 1039–1051.

    Article  Google Scholar 

  • Gould, A. L. (1997). Issues in blinded sample size re-estimation.Comm. Stat.—Sim. Comp. 26, 1229–1239.

    Article  MATH  Google Scholar 

  • Gould, A. L., Pecore, V. J. (1982). Group sequential methods for clinical trials allowing early acceptance of H0 and incorporating costs.Biometrika 69, 75–80.

    Google Scholar 

  • Gould, A. L., Shih, W. J. (1992). Sample size re-estimation without unblinding for normally distributed outcomes with unknown variance.Comm. Stat.—Theory Meth. 21, 2833–2853.

    Article  MATH  Google Scholar 

  • Gould, A. L., Shih, W. J. (1998). Modifying the design of ongoing trials without unblinding.Statistics in Medicine 17, 89–100.

    Article  Google Scholar 

  • Hayre, L. S. (1985). Group sequential sampling with variable group sizes.J. R. Statist. Soc. B. 47, 90–97.

    MathSciNet  MATH  Google Scholar 

  • Hedges, L. V., Olkin, I. (1985).Statistical Methods for Meta Analysis. New York: Akademic Press.

    MATH  Google Scholar 

  • Hwang, I. K., Shih, W. J., DeCani, J. S. (1990). Group sequential designs using a family of Type I error probability spending functions.Statistics in Medicine 9, 1439–1445.

    Article  Google Scholar 

  • Jennison, C. (1987). Efficient group sequential tests with unpredictable group sizes.Biometrika 74, 155–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Jennison, C., Turnbull, B. (1991a). Exact calculations for sequential: t, chi-square and F tests.Biometrika 78, 133–141.

    MathSciNet  MATH  Google Scholar 

  • Jennison, C., Turnbull, B. (1991b). Group sequential tests and repeated confidence intervals.Handbook of Sequential Analysis (Ghosh Sen, eds.) pages 283–311.

  • Jennison, C., Turnbull, B. W. (1999).Group Sequential Methods with Applications to Clinical Trials. Chapman & Hall, Boca Raton, London, New York, Washington, D.C.

    Google Scholar 

  • Kieser, M., Bauer, P., Lehmacher, W. (1999). Inference on multiple endpoints in clinical trials with adaptive interim analyses.Biometrical J. 41, 261–277.

    Article  MATH  Google Scholar 

  • Kieser, M., Friede, T. (2000). Re-calculating the sample size in internal pilot study designs with control of the type I error rate.Statistics in Medicine, in press.

  • Kim, K., Boucher, H., Tsiatis, A. A. (1995). Design and analysis of group sequential logrank tests in maximum duration versus information trials.Biometrics 51, 988–1000.

    Article  MATH  Google Scholar 

  • Kim, K., DeMets, D. L. (1987). Design and analysis of group sequential tests based on the Type I error spending rate function.Biometrika 74, 149–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Köpcke, W. (1984).Zwischenauswertungen und vorzeitiger Abbruch von Therapiestudien. Springer, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Köpcke, W. (1989). Analyses of group sequential clinical trials.Controlled Clinical Trials 10, 222–230S.

    Article  Google Scholar 

  • Lan, K. K. G., DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials.Biometrika 70, 659–663.

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, K. K. G., DeMets, D. L. (1989). Group sequential procedures: Calender versus information time.Statistics in Medicine 8, 1191–1198.

    Article  Google Scholar 

  • Lan, K. K. G., Reboussin, D. M., DeMets, D. L. (1994). Information and information fractions for design and sequential monitoring of clinical trials.Comm. Stat.—Theory Meth. 23, 403–420.

    Article  MATH  Google Scholar 

  • Lehmacher, W., Kieser, M., Hothorn, L. (2000). Sequential and multiple testing for dose-response analysis.Drug Information J., in press.

  • Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials.Biometrics 55, 1286–1290.

    Article  MATH  Google Scholar 

  • Li, Z., Geller, N. L. (1991). On the choice of times for data analysis in group sequential trials.Biometrics 47, 745–750.

    Article  Google Scholar 

  • Liu, W. (1995). A group sequential procedure for all-pairwise comparisons of k treatments based on range statistics.Biometrics 51, 946–955.

    Article  MATH  Google Scholar 

  • McPherson, C. K., Armitage, P. (1971). Repeated significance tests on accumulating data when the null hypothesis is not true.J. Roy. Stat. Soc. A 134, 15–25.

    Article  Google Scholar 

  • McPherson, K. (1982). On choosing the number of interim analyses in clinical trials.Statistics in Medicine 1, 25–36.

    Article  Google Scholar 

  • Müller, H.-H., Schäfer, H. (1999a). Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential approaches.Submitted.

  • Müller, H.-H., Schäfer, H. (1999b). Optimization of testing times and critical values in sequential equivalence testing.Statistics in Medicine 18, 1769–1788.

    Article  Google Scholar 

  • O’Brien, P. C., Fleming, T. R. (1979). A multiple testing procedure for clinical trials.Biometrics 35, 549–556.

    Article  Google Scholar 

  • Pampallona, S., Tsiatis, A. A. (1994). Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favour of the null hypothesis.J. Stat. Plan. Inf. 42, 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Pampallona, S., Tsiatis, A. A., Kim, K. (1995). Spending functions for the type I and type II error probabilities of group sequential tests.Manuscript.

  • Pigeot, I. (1999). Basic concepts of multiple tests—a survey.Statistical Papers.

  • Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials.Biometrika 64, 191–199.

    Article  Google Scholar 

  • Pocock, S. J. (1982). Interim analyses for randomized clinical trials: the group sequential approach.Biometrics 38, 153–162.

    Article  Google Scholar 

  • Posch, M., Bauer, P. (1999). Adaptive two stage designs and the conditional error function.Biometrical J. 41, 689–696.

    Article  MATH  Google Scholar 

  • Proschan, M. A. (1999). A multiple comparison procedure for three- and four-armed controlled clinical trials.Statistics in Medicine 18, 787–798.

    Article  Google Scholar 

  • Proschan, M. A., Follmann, D. A., Waclawiw, M. A. (1992). Effects on assumption violations on type I error rate in group sequential monitoring.Biometrics 48, 1131–1143.

    Article  Google Scholar 

  • Proschan, M. A., Hunsberger, S. A. (1995). Designed extension of studies based on conditional power.Biometrics 51, 1315–1324.

    Article  MATH  Google Scholar 

  • SAS Institute Inc. (1995).SAS/IML Software: Changes and Enhancements through Release 6. 11. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schäfer, H., Müller, H.-H. (1999). A general statistical method for design changes during the course of an experiment.Submitted.

  • Shen, Y., Fisher, L. (1999). Statistical inference for self-designing clinical trials with a one-sided hypothesis.Biometrics 55, 190–197.

    Article  MATH  Google Scholar 

  • Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions.J. Amer. Stat. Ass. 62, 626–633.

    Article  MATH  Google Scholar 

  • Siegmund, D. (1985).Sequential Analysis. Springer, New York, Berlin, Heidelberg, Tokyo.

    MATH  Google Scholar 

  • Slepian, D. (1962). The one-sided barrier problem for Gaussian noise.Bell. System Technical Journal 41, 463–501.

    MathSciNet  Google Scholar 

  • Slud, E., Wei, L. J. (1982). Two-sample repeated significance tests based on the modified Wilcoxon statistic.J. Amer. Stat. Ass. 77, 862–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Sonnemann, E. (1991). Kombination unabhängiger Tests.In: Vollmar, J. (ed.): Biometrie in der chemisch-pharmazeutischen Industrie 4, 91–112.

  • Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance.Ann. Math. Statist. 16, 243–258.

    Article  MATH  Google Scholar 

  • Tang, D.-I., Geller, N. L. (1999). Closed testing procedures for group sequential clinical trials with multiple endpoints.Biometrics 55, 1188–1192.

    Article  MATH  Google Scholar 

  • Turnbull, B. W. (1997). Group sequential tests.Encyclopedia of Statistical Sciences (Kotz, Read, Banks eds).

  • Wald, A. (1947).Sequential Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Wang, S. K., Tsiatis, A. A. (1987). Approximately optimal one-parameter boundaries for group sequential trials.Biometrics 43, 193–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1997). A technical note on the power determination for Fisher’s combination test.Biometrical J. 39, 831–838.

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1998). A comparison of two methods for adaptive interim analyses in clinical trials.Biometrics 54, 696–705.

    Article  MATH  Google Scholar 

  • Wassmer, G. (1999a). Group sequential monitoring with arbitrary inspection times.Biometrical J. 41, 197–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1999b). Multistage adaptive test procedures based on Fisher’s product criterion.Biometrical J. 41, 279–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1999c).Statistische Testverfahren für gruppensequentielle und adaptive Pläne in klinischen Studien. Theoretische Konzepte und deren praktische Umsetzung mit SAS. Verlag Alexander Mönch, Köln.

    Google Scholar 

  • Wetherill, G. B. (1975).Sequential Methods in Statistics. Chapman and Hall, London.

    MATH  Google Scholar 

  • Whitehead, J. (1997).The Design and Analysis of Sequential Clinical Trials. Wiley, New York, revised 2nd edition.

    Google Scholar 

  • Wittes, J., Brittain, E. (1990). The role of internal pilot studies in increasing the efficiency of clinical trials.Statistics in Medicine 9, 65–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassmer, G. Basic concepts of group sequential and adaptive group sequential test procedures. Statistical Papers 41, 253–279 (2000). https://doi.org/10.1007/BF02925923

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925923

Key words

Navigation