Skip to main content
Log in

Estimating the normal dispersion matrix and the precision matrix from a decision-theoretic point of view: a review

  • Review Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Based on a pxp Wishart matrix S ∼ Wp(Ω|n) and an independent vector\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{X} \sim N_p (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\mu } ,\Sigma )\), various point estimation methods are discussed in a decision-theoretic framework to estimate the dispersion matrix Ω and the precision matrix ∑−1. In this article we try to review the rich and vast literature on the above mentioned problems which has been developed in the last three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cacoullos, T. and Olkin, I. (1965). On the bias of functions of characterisitic roots of a random matrix.Biometrika, 52, 87.

    Article  MATH  MathSciNet  Google Scholar 

  2. Dasgupta, A. (1986). Simultaneous estimation in the multiparameter gamma distribution under weighted quadratic loss.Annals of Statistics, 14, 206–219.

    Article  MATH  MathSciNet  Google Scholar 

  3. Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis, Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  4. Dey, D. K. and Srinivasan, C. (1985). Estimation of a covariance matrix under Stein's loss.Annals of Statistics, 13, 1581–1591.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dey, D. K. and Srinivasan, C. (1986). Trimmed minimax estimator of a covariance matrix.Annals of the Institute of Statistical Mathematics, 38, Part A, 101–108.

    Article  MATH  MathSciNet  Google Scholar 

  6. Dey, D. K., Ghosh, M. and Srinivasan, C. (1990). A new class of improved estimators of a multinormal precision matrix.Statistics and Decisions, 8, 141–151.

    MATH  MathSciNet  Google Scholar 

  7. Devlin, S. J., Gnanadesikan, R. and Kettenring, J. R. (1975). Robust estimation and outlier detection with correlation coefficients.Biometrika, 62, 531–545.

    Article  MATH  Google Scholar 

  8. Efron, B. and Morris, C. (1972). Empirical Bayes on vector observations—An extension of Stein's method.Biometrika, 59, 335–347.

    Article  MATH  MathSciNet  Google Scholar 

  9. Efron, B. and Morris, C. (1973). Stein's estimation rule and its competitors: An empirical Bayes approach.Journal of American Statistical Association. 68, 117–130.

    Article  MATH  MathSciNet  Google Scholar 

  10. Efron, B. and Morris, C. (1975). Data analysis using Stein's estimator and its generalizations.Journal of American Statistical Association. 8, 586–597.

    Google Scholar 

  11. Efron, B. and Morris, C. (1976). Multivariate empirical Bayes and estimation of covariance matrices.Annals of Statistics, 4, 22–32.

    Article  MATH  MathSciNet  Google Scholar 

  12. Girshik, M. A. and Savage, L. J. (1951). Bayes and minimax estimates for quadratic loss functions. Proceedings of the second Berkeley Symposium on Mathematical Statistics and Probability, 53–73, Univ. of California Press.

  13. Haff, L. R. (1977). Minimax estimators for a multinormal precision matrix.Journal of Multivariate Analysis, 7, 374–385.

    Article  MATH  MathSciNet  Google Scholar 

  14. Haff, L. R. (1979a). Estimation of the inverse covariance matrix: random mixtures of the inverse Wishart matrix and the identity.Annals of Statistics, 7, 1264–1276.

    Article  MATH  MathSciNet  Google Scholar 

  15. Haff, L. R. (1979b). An identity for the Wishart distribution with application.Journal of Multivariate Analysis, 9, 531–542.

    Article  MATH  MathSciNet  Google Scholar 

  16. Haff, L. R. (1980). Empirical Bayes estimation of the multivariate normal covariance matrix.Annals of Statistics, 8 586–597.

    Article  MATH  MathSciNet  Google Scholar 

  17. Haff, L. R. (1981). Further identities for the Wishart distribution with applicaitions in regressions.Canadian Journal of Statistics, 9, 214–224.

    Article  MathSciNet  Google Scholar 

  18. Haff, L. R. (1982). Solutions of the Euler—Lagrange equations for certain multivariate normal estimation problems. Unpublished manuscript.

  19. Hodges, J. L., Jr., and Lehmann, E. L (1951). Some applications of the Cramér-Rao inequality. Proceedings of the second Berkely Symposium on Mathematical Statistics and Probability, 13–22, Univ. of California Press.

  20. James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 361–379, Univ. of California Press.

  21. Karlin, S. (1958). Admisssibility for estimation with quadratic loss.Annals of Mathematical Statistics, 29, 406–436.

    Article  MathSciNet  Google Scholar 

  22. Khirsagar, A. M. (1978).Multivariate Analysis. Marcel Dekker, Inc. New York and Basel.

    Google Scholar 

  23. Kiefer, J. (1957). Invariance, minimax sequential estimation and continuous time processes.Annals of Mathematical Statistics, 28, 573–601.

    Article  MathSciNet  Google Scholar 

  24. Krishnamoorthy, K. (1984). Unpublished Ph. D. dissertation, Department of Mathematics, Indian Institute of Technology, Kanpur, India.

  25. Krishnamoorthy, K. and Gupta, A. K. (1989). Improved minimax estimators of normal precision matrix.The Canadian Journal of Statistics, 17, 91–102.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kubokawa, T. (1989). Improved estimation of a covariance matrix under quadratic loss.Statistics and Probability Letters 8, 69–71.

    Article  MATH  MathSciNet  Google Scholar 

  27. Lin, S. P. (1977). Improved procedures for estimating a correlation matrix. Unpublished Ph. D. dissertation. Department of Statistics, University of Chicago, USA.

    Google Scholar 

  28. Lin, S. P. and Perlman, M. D. (1982). An improved procedure for the estimation of a correlation matrix. Proceedings of the First Pacific Area Statistical Conference (K. Matusita ed.), Tokyo, Japan.

  29. Lin, S. P. and Perlman, M. D. (1985). A Monte—Carlo comparison of four estimators for a covariance matrix.Multivariate Analysis 6, 411–429, Krishnaiah ed., North-Holland, Amsterdam.

    Google Scholar 

  30. Maatta, J. and Casella, G. (1990). Developments in decision theoretic variance estimation.Statistical Science, 5, 90–120.

    MATH  MathSciNet  Google Scholar 

  31. Nagao, H. (1989). Tests of hypotheses for covariance matrices and distributions under multivariate normal populations.American Journal of Mathematical and Management Sciences 9, 31–49.

    MATH  MathSciNet  Google Scholar 

  32. Olkin, I. and Selliah, J. (1977). Estimating covariance in a multivariate normal distribution.Statistical Decison Theory and Related Topics, II (ed. S. S. Gupta), 313–326.

  33. Olkin, I. and Siotani, M. (1976). Asymptotic distribution of functions of a correlation matrix. In: Essays in Probability and Statistics (S. Ikeda et al. ed.), Tsusho, Tokyo, Japan.

    Google Scholar 

  34. Perlman, M. D. (1972). Reduced mean square error estimation for several parameters.Sankhyá (B), 34, 89–92.

    MathSciNet  Google Scholar 

  35. Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. John Wiley and Sons.

  36. Selliah, J. B. (1964). Estimation and testing problems in a Wishart distribution. Tech. Report No.-10, Department of Statistics, Stanford University, USA.

    Google Scholar 

  37. Sharma, D. (1980). An estimator of normal covariance matrix.Calcutta Statistical Association Bulletin, 29, 161–167.

    MathSciNet  Google Scholar 

  38. Sharma, D. and Krishnamoorthy, K. (1983). Orthogonal equivariant minimax estimators of bivariate normal covariance matrix and precision matrix.Calcutta Statistical Association Bulletin, 32, 23–45.

    MATH  MathSciNet  Google Scholar 

  39. Sheena, Y. and Takemura, A. (1992). Inadmissibility of non-order preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss.Journal of Multivariate Analysis, 41, 117–131.

    Article  MATH  MathSciNet  Google Scholar 

  40. Sinha, B. K. (1976). On improved estimators of the generalized variance.Journal of Multivariate Analysis, 6, 617–625.

    Article  MATH  MathSciNet  Google Scholar 

  41. Sinha, B. K. (1987). Inadmissibility of the best equivariant estimators of the variance—covariance matrix, the precision matrix and the generalized variance: A survey. Proceedings of the International Symposium on Advances in Multivariate Statistical Analysis, 483–497. Edited by S. DasGupta and J. K. Ghosh, Indian Statistical Institute, Calcutta, INDIA.

    Google Scholar 

  42. Sinha, B. K. and Ghosh, M. (1987). Inadmissibility of the best equivariant estimators of the variance—covariance matrix, the precision matrix and the generalized variance under entropy loss.Statistics and Decisions, 5, 201–227.

    MATH  MathSciNet  Google Scholar 

  43. Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean.Annals of the Institute of Statistical Mathematics, 16, 155–160.

    Article  MathSciNet  Google Scholar 

  44. Stein, C. (1965). Some problems in multivariate analysis, Part I, Technical Report No. 6. Department of Statistics, Stanford University.

  45. Stein, C. (1975). Reitz Lecture. 39th Annual meeting, IMS, Atlanta, Georgia.

  46. Stein, C. (1977a). Unpublished notes on estimating the covariance matrix.

  47. Stein, C. (1977b). Lectures on the theory of estimation of many parameters. (In Russian). In: Studies in the Statistical Theory of Estimation, Part—I (Ibraginov, I. A. and Nikulin, M. S. eds.), Proceedings of the Scientific Seminars of the Steklov Institute, Leningrad Division, 74, 4–64.

  48. Takemura, A. (1984). An orthogonally invariant minimax estimator of the covariance matrix of a multivariate normal population.Tsukuba Journal of Mathematics, 8, 367–376.

    MATH  MathSciNet  Google Scholar 

  49. Van der Vaart, H. R. (1961). On certain characterizations of the distribution of the latent roots of a symmetric random matrix under general conditions.Annals of Mathematical Statistics, 32, 864–873.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by Faculty Summer Research Grant (1991), University of Southwestern Louisiana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, N. Estimating the normal dispersion matrix and the precision matrix from a decision-theoretic point of view: a review. Statistical Papers 34, 1–26 (1993). https://doi.org/10.1007/BF02925524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925524

Keywords and Phrases

AMS 1980 Subject Classification

Navigation