Skip to main content
Log in

Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt)

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We report a large set of 295 interfacial carbon dioxide (CO2) flux measurements obtained in the Scheldt estuary in November 2002 and April 2003, using the floating chamber method. From concomitant measurements of the air-water CO2 gradient, we computed the gas transfer velocity of CO2. The gas transfer velocity is well correlated to wind speed and a simple linear regression function gives the most consistent fit to the data. Based on water current measurements, we estimated the contribution of water current induced turbulence to the gas transfer velocity, using the conceptual relationship of O'Connor and Dobbins (1958). This allowed us to construct an empirical relationship to compute the gas transfer velocity of CO2 that accounts for the contribution of wind and water current. Based on this relationship, the spatial and temporal variability of the gas transfer velocity in the Scheldt estuary was investigated. Water currents contribute significantly to the gas transfer velocity, but the spatial and temporal variability (from daily to seasonal scales) is mainly related to wind speed variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abril, G., H. Etcheber, A. V. Borges, andM. Frankignoulle. 2000. Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary.Comptes Rendus de l'Académie des Sciences-Séries IIA—Earth and Planetary Science 330:761–768.

    Article  CAS  Google Scholar 

  • Belanger, T. V. andE. A. Korzum. 1991. Critique of floating-dome technique for estimating reaeration rates.Journal of Environmental Engineering 117:144–150.

    Article  Google Scholar 

  • Borges, A. V., B. Delille, L. S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankignoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames).Limnology and Oceanography in press.

  • Borges, A. V. andM. Frankignoulle. 2002. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast.Global Biogeochemical Cycles 16:1020.

    Article  CAS  Google Scholar 

  • Broecker, H. C. andW. Siems. 1984. The role of bubbles for gas transfer from water to air at higher wind speeds: experiments in wind-wave facility in Hamburg, p. 229–238.In W. Brutsaert and G. H. Jirka (eds.), Gas Transfer at Water Surfaces. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Carini, S., N. Weston, C. Hopkinson, J. Tucker, A. Giblin, andJ. Vallino. 1996. Gas exchange rates in the Parker River estuary, Massachusetts.Biological Bulletin 191:333–334.

    Google Scholar 

  • Cerco, C. F. 1989. Estimating estuarine reaeration rates.Journal of Environmental Engineering 115:1066–1070.

    Google Scholar 

  • Clark, J. F., P. Schlosser, H. J. Simpson, M. Stute, R. Wanninkhof, andD. T. Ho. 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique, p. 175–800.In B. Jähne and E. Monahan (eds.), Air-Water Gas Transfer. Aeon Verlag, Hanau.

    Google Scholar 

  • Clark, J. F., P. Schlosser, M. Stute, andH. J. Simpson. 1996. SF63He tracer release experiment: A new method of determining longitudinal dispersion coefficients in large rivers.Environmental Science and Technology 30:1527–1532.

    Article  CAS  Google Scholar 

  • Clark, J. F., H. J. Simpson, W. M. Smethie, andC. Toles. 1992. Gas-exchange in a contaminated estuary inferred from chlorofluorocarbons.Geophysical Research Letters 19:1133–1136.

    Article  CAS  Google Scholar 

  • Clark, J. F., R. Wanninkhof, P. Schlosser, andH. J. Simpson. 1994. Gas exchange rates in the tidal Hudson River using a dual tracer technique.Tellus 46B:274–285.

    CAS  Google Scholar 

  • Devol, A. H., P. D. Quay, J. E. Richey, andL. A. Martinelli. 1987. The role of gas-exchange in the inorganic carbon, oxygen and222Rn budgets of the Amazon.Limnology and Oceanography 32:235–248.

    CAS  Google Scholar 

  • Elsinger, R. J. andW. S. Moore. 1983. Gas exchange in the Pee Dee River based on222Rn evasion.Geophysical Research Letters 10:443–446.

    Article  CAS  Google Scholar 

  • Frankignoulle, M. 1988. Field measurements of air-sea CO2 exchange.Limnology and Oceanography 33:313–322.

    CAS  Google Scholar 

  • Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, andJ.-M. Théate. 1998. Carbon dioxide emission from European estuaries.Science 282:434–436.

    Article  CAS  Google Scholar 

  • Frankignoulle, M., I. Bourge, andR. Wollast. 1996b. Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt).Limnology and Oceanography 41:365–369.

    Article  CAS  Google Scholar 

  • Frankignoulle, M. andA. V. Borges. 2001. Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (the Scheldt estuary).Aquatic Geochemistry 7:267–273.

    Article  CAS  Google Scholar 

  • Frankignoulle, M., A. V. Borges, andR. Biondo. 2001. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments.Water Research 35:1344–1347.

    Article  CAS  Google Scholar 

  • Frankignoulle, M., J.-P. Gattuso, R. Biondo, I. Bourge, G. Copin-Montégut, andM. Pichon. 1996a. Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges.Marine Ecology Progress Series 145:123–132.

    Article  Google Scholar 

  • Hartman, B. andD. E. Hammond. 1984. Gas Exchanges rates across the sediment-water and air-water interfaces in south San Francisco Bay,Journal of Geophysical Research 89:3593–3603.

    Article  CAS  Google Scholar 

  • Hartman, B. andD. E. Hammond. 1985. Gas Exchange in San Francisco Bay.Hydrobiologia 129:59–68.

    Article  CAS  Google Scholar 

  • Jacobs, C. M. J., W. I. M. Kohsiek, andW. A. Oost. 1999. Airsea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE.Tellus B 51:629–641.

    Article  Google Scholar 

  • Kremer, J. N., A. Reischauer, andC. D'Avanzo. 2003a. Estuary-specific variation in the air-water gas exchange coefficient for oxygen.Estuaries 26:829–836.

    Google Scholar 

  • Kremer, J. N., S. W. Nixon, B. Buckley, andP. Roques. 2003b. Technical note: Conditions for using the floating chamber method to estimate air-water gas exchange.Estuaries 26:985–990.

    Article  Google Scholar 

  • Lefevre, N., A. J. Watson, D. J. Cooper, R. F. Weiss, T. Takahashi, andS. C. Sutherland. 1999. Assessing the seasonality of the oceanic sink for CO2 in the northern hemisphere.Global Biogeochemical Cycles 13:273–286.

    Article  CAS  Google Scholar 

  • Liss, P. S. andL. Merlivat. 1986. Air-sea exchange rates: Introduction and synthesis, p. 113–127.In P. Buat-Ménard (ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Marino, R. andR. W. Howarth. 1993. Atmospheric oxygenexchange in the Hudson River—Dome measurements and comparison with other natural waters.Estuaries 16:433–445.

    Article  CAS  Google Scholar 

  • Matthews, C. J. D., V. L. St. Louis, andR. H. Hesslein. 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces.Environmental Science and Technology 37:772–780.

    Article  CAS  Google Scholar 

  • McGillis, W. R., J. B. Edson, J. D. Ware, J. W. H. Dacey, J. E. Hare, C. W. Fairall, andR. Wanninkhof. 2001. Carbon dioxide flux techniques performed during GasEx-98.Marine Chemistry 75:267–280.

    Article  CAS  Google Scholar 

  • Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, andR. Upstill-Goddard. 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers.Global Biogeochemical Cycles 14:373–387.

    Article  CAS  Google Scholar 

  • O'Connor, D. J. andW. E. Dobbins. 1958. Mechanism of reaeration in natural streams.Transactions of the American Society of Civil Engineering 123:641–684.

    Google Scholar 

  • Raymond, P. A. andJ. J. Cole. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity.Estuaries 24:312–317.

    Article  CAS  Google Scholar 

  • Regnier, P., R. Wollast, andC. I. Steefel. 1997. Long term fluxes of reactive species in macrotidal estuaries: Estimates from a fully transient, multi-component reaction transport model.Marine Chemistry 58:127–145.

    Article  CAS  Google Scholar 

  • Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, andL. L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.Nature 416:617–620.

    Article  CAS  Google Scholar 

  • Smith, S. D. 1988. Coefficients for sea-surface wind stress, heat-flux, and wind profiles as a function of wind-speed and temperature.Journal of Geophysical Research 93:15467–15472.

    Article  Google Scholar 

  • Smith, S. V. andG. S. Key. 1975. Carbon dioxide and metabolism in marine environments.Limnology and Oceanography 20: 493–495.

    Article  CAS  Google Scholar 

  • Takahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson, andY. Nojiri. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects.Deep-Sea Research II 49:1601–1622.

    Article  CAS  Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean.Journal of Geophysical Research 97: 7373–7382.

    Article  Google Scholar 

  • Wanninkhof, R., J. R. Ledwell, andW. S. Broecker. 1985. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake.Science 227:1224–1226.

    Article  CAS  Google Scholar 

  • Weiss, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas.Marine Chemistry 2:203–215.

    Article  CAS  Google Scholar 

  • Zappa, C. J., P. A. Raymond, E. A. Terray, andW. R. McGillis. 2003. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary.Estuaries 26: 1401–1415.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Vieira Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, A.V., Vanderborght, JP., Schiettecatte, LS. et al. Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27, 593–603 (2004). https://doi.org/10.1007/BF02907647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907647

Keywords

Navigation