Skip to main content
Log in

α-Smooth muscle actin is expressed in a subset of bone marrow stromal cells in normal and pathological conditions

  • Published:
Virchows Archiv B

Summary

A series of 217 trephine bone marrow biopsies from adult patients and specimens from 16 fetuses and 5 infants were examined for the presence of stromal myoid cells (MCs) using a monoclonal antibody recognizing α-smooth muscle actin. In the normal adult bone marrow, stromal cells did not contain α-smooth muscle actin, whereas during fetal life, many α-smooth muscle actin-containing MCs were connected with vascular sinusoids in the primitive bone marrow. This cell type reappeared in various characteristic distribution patterns in adult bone marrow during different neoplastic and non-neoplastic conditions including metastatic carcinoma, Hodgkin’s disease, multiple myeloma, hairy cell leukemia, acute myeloid leukemia (FAB M4, 5, 7) and chronic myeloproliferative diseases. In general, the appearance of MCs was associated with a slight to pronounced increase in the deposition of reticulin and collagen fibers. We propose that bone marrow MCs represent a distinct subpopulation of fiber-associated or adventitial reticular cells undergoing cytoskeletal remodeling in response to various stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assoian RK, Sporn MB (1986) Typeβ transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 102:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1976) Proposals for the classification of acute leukemias. Br J Haematol 33:451–458

    Article  PubMed  CAS  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51:189–199

    PubMed  CAS  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1985) Criteria for the diagnosis of actue leukemia of megakaryocyte lineage (M7). Ann Int Med 103:460–462

    PubMed  CAS  Google Scholar 

  • Bentley SA (1982) Bone marrow connective tissue and the haematopoietic microenvironment. Br J Haematol 50:1–6

    Article  PubMed  CAS  Google Scholar 

  • Biagini G, Severi B, Govoni E, Preda P, Pileri S, Martinelli G, Visani G, Finelli C, Castaldini C (1985) Stromal cells in primary myelofibrosis: ultrastructural observations. Virchows Arch [B] 48:1–8

    Article  CAS  Google Scholar 

  • Boxer M, Ellman L, Geller R, Wang CA (1977) Anemia in primary hyperparathyreodism. Arch Int Med 137:588–590

    Article  CAS  Google Scholar 

  • Broudy VC, Zuckerman KS, Jetmalani S, Fitchen JH, Bagby Jr GC (1986) Monocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hematopoietic growth factors. Blood 68:530–534

    PubMed  CAS  Google Scholar 

  • Büchner T, Urbanitz D, Emmerich B, Fischer JT, Fülle HH, Heinecke A, Hossfeld DK, Koeppen KM, Labedzki L, Löffler H., Nowrusian MR, Pfreundschuh M, Pralle H, Rühl H, Wendt FC for the AML Cooperative Group (1982) Multicenter study on intensified remission induction therapy for acute myeloid leukemia. Leukemia Res 6:827–831

    Article  Google Scholar 

  • Burt AD, Robertson JL, Heir J, MacSween RNM (1986) Desmin-containing stellate cells in rat liver: distribution in normal animals and response to experimental acute liver injury. J Pathol 150:29–35

    Article  PubMed  CAS  Google Scholar 

  • Castro-Malaspina H, Rabellino EM, Yen A, Nachman RL, Moore MAS (1981) Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 57:781–787

    PubMed  CAS  Google Scholar 

  • Charbord P, Gown AM, Keating A, Singer JW (1985) CGA-7 and HHF, two monoclonal antibodies that recognize muscle actin and react with adherent cells in human long-term bone marrow culture. Blood 66:1138–1142

    PubMed  CAS  Google Scholar 

  • Czernobilsky B, Shezen E, Lifschitz-Mercer B, Fogel M, Luzon A, Jacob N, Skalli O, Gabbiani G (1989) Alpha smooth muscle actin (α-SM actin) in normal human ovaries, in ovarian stromal hyperplasia and in ovarian neoplasms. Virchows Arch [B] [Cell Pathol] 57:55–61

    CAS  Google Scholar 

  • Delacretaz F, Perey L, Schmidt PM, Chave JP, Costa J (1987) Histopathology of bone marrow in human immunodeficiency virus infection. Virchows Arch [A] [Pathol Anat] 411:543–551

    Article  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haematopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  • Fibbe WE, van Damme J, Billiau A, Goselink HM, Voogt PH, van Eeden G, Ralph P, Altrock BW, Falkenburg JHF (1988) Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony stimulating factor and macrophage colony stimulating factor. Blood 71:430–435

    PubMed  CAS  Google Scholar 

  • Fohlmeister I, Klein H, Thiele J, Wienhold S, Fischer R (1988) Morphometric assessment of bone marrow fiber content in acute nonlymphatic leukemia at presentation. Anal Quant Cytol Histol 10:110–114

    PubMed  CAS  Google Scholar 

  • Franke WW, Moll R (1987) Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular reticulum cells of human lymph nodes, tonsils, and spleen. Differentiation 36:145–163

    Article  PubMed  CAS  Google Scholar 

  • Freundlich B, Bomalaski JS, Neilson E, Jimenez SA (1986) Regulation of fibroblast proliferation and collagen synthesis by cytokines. Immunol Today 7:303–307

    Article  CAS  Google Scholar 

  • Glasser SR, Julian J (1986) Intermediate filament protein as a marker of uterine stromal cell decidualization. Biol Reprod 35:463–474

    Article  PubMed  CAS  Google Scholar 

  • Gown AM, Vogel AM, Gordon D, Lu PL (1985) A smooth muscle-specific monoclonal antibodies recognizes smooth muscle actin isozymes. J Cell Biol 100:807–813

    Article  PubMed  CAS  Google Scholar 

  • Hsu CYJ, Frankel FR (1987) Effect of estrogen on the expression of mRNAs of different actin isoforms in immature rat uterus. Cloning of α-smooth muscle actin message. J Biol Chem 262:9594–9600

    PubMed  CAS  Google Scholar 

  • Huff KK, Kaufmann D, Gabbay KH, Spencer EM, Lippman ME, Dickson RB (1986) Secretion of an insulin-like growth factor-I-related protein by human breast cancer cells. Cancer Res 46:4613–4619

    PubMed  CAS  Google Scholar 

  • Jubel A, v. Kalle C, Schaadt M, Diehl V (1988) Fibroblast-stimulating activity produced by Hodgkin cell lines. Blut (Abstr) 57:220

    Google Scholar 

  • Le J, Vilcek J (1987) Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest 56:234–248

    PubMed  CAS  Google Scholar 

  • Leoncini P, Cintorino M, Vindigni C, Leoncini L, Armellini D, Bugnoli M, Skalli O, Gabbiani G (1988) Distribution of cytoskeletal and contractile proteins in normal and tumour bearing salivary and lacrimal glands. Virchows Arch[A] [Pathol Anat] 412:329–337

    Article  CAS  Google Scholar 

  • Martinet Y, Bitterman PB, Mornex JF, Grotendorst GR, Martin GR, Crystal RG (1986) Activated human monocytes express the c-sis proto-oncogene and release a mediator showing PDGF-like activity. Nature 319:158–160

    Article  PubMed  CAS  Google Scholar 

  • McCarthy DM (1985) Fibrosis of the bone marrow: content and causes. Br J Haematol 59:1–7

    Article  PubMed  CAS  Google Scholar 

  • Miettinen M (1988) Antibody specific to muscle actins in the diagnosis and classification of soft tissue tumors. Am J Pathol 130:205–215

    PubMed  CAS  Google Scholar 

  • Mori Y, Lennert K (1969) Electron microscopic atlas of lymph node cytology and pathology. Springer, New York

    Google Scholar 

  • Oka Y, Orth DN (1983) Human plasma epidermal growth factor/β-urogastrone is associated with blood platelets. J Clin Invest 72:249–259

    Article  PubMed  CAS  Google Scholar 

  • Osborn M, Weber K (1983) Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 48:372–394

    PubMed  CAS  Google Scholar 

  • Peres R, Betsholtz C, Westermark B, Heldin CH (1987) Frequent expression of growth factors for mesenchymal cells in human mammary carcinoma cell lines. Cancer Res 47:3425–3429

    PubMed  CAS  Google Scholar 

  • Pinkus GS, Warhol MJ, O’Connor EM, Etheridge CL, Fuji-wara K (1986) Immunohistochemical localization of smooth muscle myosin in human spleen lymph node, and other lymphoid tissues: unique staining patterns in splenic white pulp and sinuses, lymphoid follicles, and certain vasculature, with ultrastructural correlations. Am J Pathol 123:440–453

    PubMed  CAS  Google Scholar 

  • Ross R, Glomset J, Kariya B, Harker L (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 71:1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt E, Sinnett-Smith J, Taylor-Papadimitrou J (1985) Production of PDGF-like growth factor by breast cancer cell lines. Int J Cancer 36:247–252

    Article  PubMed  CAS  Google Scholar 

  • Rungger-Brändle E, Gabbiani G (1983) The role of cytoskeletal and cytocontractile elements in pathologic processes. Am J Pathol 110:361–392

    PubMed  Google Scholar 

  • Sappino AP, Skalli O, Jackson B, Schürch W, Gabbiani G (1988) Smooth muscle differentiation in stromal cells of malignant and non-malignant breast tissues. In J Cancer 41:707–712

    Article  CAS  Google Scholar 

  • Schaefer HE (1984a) How to fix, decalcify and stain paraffin embedded bone marrow biopsies. In: Pathology of the Bone Marrow, edited by Lennert K, Hübner K, pp 6–7, Stuttgart, Springer Verlag

    Google Scholar 

  • Schaefer HE (1984b) Cytology and histology of the normal human bone marrow. In: Pathology of the Bone Marrow, edited by Lennert K, Hübner K, pp 33–53, Stuttgart, Springer Verlag

    Google Scholar 

  • Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against α-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Article  PubMed  CAS  Google Scholar 

  • Skalli O, Schürch W, Seemayer T, Lagace R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathological settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60:275–285

    PubMed  CAS  Google Scholar 

  • Song ZX, Quesenberry PJ (1984) Radioresistant murine stromal cells: a morphologic and functional characterization. Exp Hematol 12:523–533

    PubMed  CAS  Google Scholar 

  • Stamenkovic I, Skalli O, Gabbiani G (1986) Distribution of intermediate filament proteins in normal and diseased human glomeruli. Am J Pathol 125:465–475

    PubMed  CAS  Google Scholar 

  • Tavassoli M (1977) Adaptation of marrow sinus wall to fluctuation in the rate of red cell delivery: studies in rabbits after blood-letting. Br J Haematol 35:25–32

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli M, Takahashi K (1982) Morphological studies on long-term culture of marrow cells: characterization of the adherent stromal cells and their interactions in maintaining the proliferation of hematopoietic stem cells. Am J Anat 164:91–111

    Article  PubMed  CAS  Google Scholar 

  • Toccanier-Pelte MF, Skalli O, Kapanci Y, Gabbiani G (1987) Characterization of stromal cells with myoid features in lymph nodes and spleen in normal and pathological conditions. Am J Pathol 129:109–118

    PubMed  CAS  Google Scholar 

  • Tsukada T, McNutt MA, Ross R, Gown AM (1987) HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive, and neoplastic human tissues. Am J Pathol 127:389–402

    PubMed  CAS  Google Scholar 

  • Tykocinski M, Schinella RA, Greco MA (1983) Fibroblastic reticulum cells in human lymph nodes: an ultrastructural study. Arch Pathol Lab Med 107:418–422

    PubMed  CAS  Google Scholar 

  • Van Muijen GNP, Ruiter DJ, Warnaar SO (1987) Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest 57:359–369

    PubMed  Google Scholar 

  • Wang YC, Rubenstein PA (1988) Epidermal growth factor controls smooth muscle α-isoactin expression in BCH1 cells. J Cell Biol 106:797–803

    Article  PubMed  CAS  Google Scholar 

  • Wolf NS (1979) The haematopoietic microenvironment. Clin Haematol 8:469–493

    PubMed  CAS  Google Scholar 

  • Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A, Watanabe S, Usui K (1984) Immunocytochtemical detection of desmin in fat-storing cells (Ito cells). Hepatology 4:709–714

    PubMed  CAS  Google Scholar 

  • Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS (1986) Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating and prostaglandin E2. J Clin Invest 78:1857–1863

    Article  Google Scholar 

  • Zuckerman KS, Wicha MS (1983) Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood 61:540–547

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt-Gräff, A., Skalli, O. & Gabbiani, G. α-Smooth muscle actin is expressed in a subset of bone marrow stromal cells in normal and pathological conditions. Virchows Archiv B Cell Pathol 57, 291–302 (1989). https://doi.org/10.1007/BF02899094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899094

Key words

Navigation