Skip to main content
Log in

Enhanced production of cellulases byCellulomonas strains grown on different cellulosic residues

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Cellulomonas strains consumed commercial cellulose, cellulosic residues, xylan, cellobiose and carboxymethyl cellulose (CMC) as carbon sources in liquid culture, the growth being the most on cellobiose medium. All three components of the cellulase complex ofCellulomonas were produced when the organisms utilized all substrates as sole carbon and energy sources. The filter-paper cellulase (FPase) and endo-glucanase (CMCase) activities were higher in media containing α-cellulose and cellulosic residues than in media containing CMC, cellobiose, and xylan. Cell-free supernatants of all organisms exhibited greater CMC hydrolyzing activity than filter paper and β-glucoside hydrolyzing activities. All strains synthesized β-glucosidase maximally on cellobiose followed by commercial cellulose and cellulosic residues.C. biazotea produced the highest FPase and CMCase activity during growth on α-cellulose. It was followed byC. flavigena, C. cellasea, andC. fimi. Endo-glucanase and FPase from all organisms were secreted into the medium; 10–13 % became adsorbed on the surface of the insoluble substrates and could be successfully eluted using Tween 80. β-Glucosidase was located in cell extracts from all organisms.C. biazotea produced FPase and β-glucosidase activities several-fold greater than those produced by many other strains ofCellulomonas and some other cellulolytic bacteria and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azad M.I.: Recycling of organic matter. Fortnightly issue, “Zirat Nama Supplement” January 15th, 1986. Ayub Agriculture Research Institute, Faisalabad 1986.

    Google Scholar 

  • Bahkali A.H.:In vitro production of proteolytic and cellulolytic enzymes byColletotrichum lindemuthianum isolated from soyabean grown in Saudi Arabia.World J.Microbiol.Biotechnol. 8, 55–59 (1992).

    Article  CAS  Google Scholar 

  • Barron A., May G., Berner E., Villarejo M.: Regulation of envelope protein composition during adaptation to osmotic stress inEscherichia coli.J.Bacteriol. 167, 433–438 (1986).

    PubMed  CAS  Google Scholar 

  • Beguin P.: Molecular biology of cellulose degradation.Ann.Rev.Microbiol. 44, 219–248 (1990).

    Article  CAS  Google Scholar 

  • Deshpande V., Ericksson K.E.: 1,4-β-Glucosidases ofSporotrichum pulverulentum.Methods Enzymol. 160, 415–424 (1988).

    CAS  Google Scholar 

  • Duenas R., Tengerdy R.P., Gutierrez-Corea M.: Cellulase production by mixed fungi in solid-substrate fermentation of bagasse.World J.Microbiol.Biotechnol. 11, 333–337 (1995).

    Article  CAS  Google Scholar 

  • Haggett K.D., Gray P.P., Dunn N.W.: Crystalline cellulose degradation by a strain ofCellulomonas and its mutant derivatives.Eur.J.Appl.Microbiol.Biotechnol. 6, 183–190 (1978).

    Article  Google Scholar 

  • Hrmova M., Petrakova E., Biely P.: Induction of cellulose and xylan-degrading enzyme systems inAspergillus terreus by homo- and hetero-disaccharides composed of glucose and xylose.J.Gen.Microbiol. 137, 541–547 (1991).

    PubMed  CAS  Google Scholar 

  • Kubicek C.P., Messner R., Guber F., Mach R.L., Kubicek-Pranz E.M.: TheTrichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus.Enzyme Microb.Technol. 15, 90–99 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Latif F., Rajoka M.I., Malik K.A.: Saccharification ofLeptochloa fusca (kallar grass straw) by thermostable cellulases.Biores.Technol. 50, 107–112 (1994).

    Article  CAS  Google Scholar 

  • Lin E., Wilson D.V.: Regulation of β-1,4-endoglucanase synthesis inThermomonospora fusca.Appl.Environ.Microbiol. 53, 1352–1357 (1987).

    PubMed  CAS  Google Scholar 

  • Marsden W.L., Gray P.P.: Enzymatic hydrolysis of cellulose in lignocellulosic materials.CRC Crit.Rev.Biotechnol. 3, 235–276 (1986).

    Article  CAS  Google Scholar 

  • Milagres A.M.F., Lacis L.S., Prade R.A.: Characterization of xylanase production by a local isolate ofPenicillium janthinellum.Enzyme Microb.Technol. 15, 248–253 (1993).

    Article  CAS  Google Scholar 

  • Miller G.L.: Use of dinitrosalicylic acid (DNS) for determination of reducing sugars.Anal.Chem. 31, 426–428 (1959).

    Article  CAS  Google Scholar 

  • Nakamura K., Kitamura K.: Cellulases ofCellulomonas uda.Methods Enzymol. 160, 211–216 (1988).

    Article  CAS  Google Scholar 

  • Nakamura K., Kitamura K.: Isolation and identification of crystalline cellulose hydrolyzing bacterium and its enzymic properties.J.Ferment.Technol. 60, 343–348 (1982).

    CAS  Google Scholar 

  • Nochure S.V., Roberts M.F., Demain A.L.: True cellulase production byClostridium thermocellum grown on different carbon sources.Biotechnol.Lett. 15, 641–646 (1993).

    Article  Google Scholar 

  • Pirt S.J.:Principles of Cell Cultivation, pp. 5, 7, 8, 159. Blackwells Scientific, London 1975.

    Google Scholar 

  • Rajoka M.I.: Bioconversion of lignocellulosic materials raised from saline lands for production of biofuels usingCellulomonas species (as cellulolytic organisms).PhD Thesis. University of the Punjab, Lahore (Pakistan) 1990.

    Google Scholar 

  • Rajoka M.I., Malik K.A.: Comparison of different strains ofCellulomonas for production of cellulolytic and xylanolytic enzymes from biomass produced on saline lands.Biotechnol.Lett. 8, 557–560 (1986).

    Article  Google Scholar 

  • Rajoka M.I., Malik K.A.: Cellulase and hemicellulase production byCellulomonas flavigena NIAB 441.Biotechnol.Lett. 6, 597–601 (1984).

    Article  CAS  Google Scholar 

  • Ryu D.D.Y., Mandels M.: Cellulases: Biosynthesis and application.Enzyme Microb.Technol. 2, 91–102 (1980).

    Article  CAS  Google Scholar 

  • Shirlaw D.W.G.:A Practical Course in Agriculture Chemistry, pp. 122–131. Pergamon Press, USA 1969.

    Google Scholar 

  • Stoppok W., Rapp P., Wagner F.: Formation, location and regulation of endo-1,4-β-glucanase and β-glucosidase fromCellulomonas uda.Appl.Environ.Microbiol. 44, 44–53 (1982).

    PubMed  CAS  Google Scholar 

  • Thomson J.A.: Molecular biology of xylan degradation.FEMS Microbiol.Rev. 104, 65–82 (1993).

    Article  CAS  Google Scholar 

  • Waldron C.R. Jr.,Becker C.A., Vallone A., Eveleigh D.E.: Isolation and characterization of a cellulolytic actinomyceteMicrobispora bispora.Appl.Microbiol.Biotechnol. 24, 477–486 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported byPakistan Atomic Energy Commission. Some chemicals were purchased from funds allocated byUnited States Agency for International Development, Washington (DC, USA), under PSTC proposal 6.163.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajoka, M.I., Malik, K.A. Enhanced production of cellulases byCellulomonas strains grown on different cellulosic residues. Folia Microbiol 42, 59–64 (1997). https://doi.org/10.1007/BF02898647

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898647

Keywords

Navigation