Skip to main content
Log in

The pathomorphology of developing skeletal muscles of rabbits treated with glucocorticoids

  • Published:
Virchows Archiv B

Summary

Dexamethasone or hydrocortisone were applied daily to rabbits from the first to the ninth day after birth and the structure of skeletal muscles was studied with the aim of demonstrating changes induced by glucocorticoids. Muscle development was arrested following treatment with glucocorticoids and individual muscle fibres showed atrophy and degenerative changes. Nine days after treatment, the mean fibre diameter in the biceps femoris muscles was decreased to 6.16 ± 1.08 μm, as compared with the mean diameter 7.95 ± 1.28 μm in the same muscles of new-born rabbits and with 9.03±0.56 μm of 9-day-old control animals (x ± S.E.). The ultrastructure of muscle fibres of the biceps femoris was variously impaired after treatment, except for the largest fibre of each fascicle which usually remained unaffected. The changes induced by corticosteroids ranged from a slight reduction of myofibrillar content to severe myofibrillar deficiency, vacuolization, focal degeneration and necrosis. The differentiation of satellite myoblasts and myotubes was retarded after treatment and numerous satellite cells underwent degeneration.

As the character and extent of structural changes induced in developing muscles by glucocorticoids resemble the pathomorphology of congenital myofibrillar hypoplasia of piglets, the possibility of a common pathogenesis in the two conditions is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afifi AK, Bergman RA, Harvey JC (1968) Steroid myopathy. Clinical, histologic and cytologic observations. Johns Hopkins Med J 123:158–174

    PubMed  CAS  Google Scholar 

  • Afifi AK, Bergman RA (1969) Steroid myopathy. A study of the evolution of the muscle lesion in rabbits. Johns Hopkins Med J 124:66–86

    PubMed  CAS  Google Scholar 

  • Bergmann V (1976 a) Licht- und elektronenmikroskopische Untersuchungen zur Pathogenese der Grätschstellung neugeborener Ferkel. Mh Vet Med 31:129–134

    Google Scholar 

  • Bergmann V (1976 b) Elektronenmikroskopische Befunde an der Skeletmuskulatur von neugeborenen Ferkeln mit Grätschstellung. Arch Exp Vet Med 30:239–260

    CAS  Google Scholar 

  • Bullock GR, Carter EE, Elliot P, Peters RF, Simpson P, White AM (1972) Relative changes in the function of muscle ribosomes and mitochondria during the early phase of steroid induced catabolism. Biochem J 127:881–892

    PubMed  CAS  Google Scholar 

  • Clark BA, Vignos PJ, Jr (1979) Experimental corticosteroid myopathy: effect on myofibrillar ATPase activity and protein degradation. Muscle Nerve 2:265–273

    Article  PubMed  CAS  Google Scholar 

  • Diamond IG, Franklin M, Milfay D (1974) The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function. J Physiol 236:247–257

    PubMed  CAS  Google Scholar 

  • Fajans SS, Floyd JC, Knopf RF, Conn JW (1967) Effect of aminoacids and proteins on insulin secretion in man. Recent Prog Horm Res 23:617–667

    PubMed  CAS  Google Scholar 

  • Faludi G, Gotlieb J, Meyers J (1966) Factors influencing the development of steroid-introduced myopathies. Ann NY Acad Sci 138:61–72

    Article  CAS  Google Scholar 

  • Fishman DA (1967) An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol 32:557–575

    Article  Google Scholar 

  • Goldberg AL (1969) Protein turnover in skeletal muscle. II. Effects of denervation and cortisone on protein catabolism in skeletal muscle. J Biol Chem 224:3223–3229

    Google Scholar 

  • Goldberg AL, Goodman HM (1969) Relationship between cortisone and muscle work in determining muscle size. J Physiol (Lond) 200:667–675

    CAS  Google Scholar 

  • Goldspink DF (1980) Physiological factors influencing protein turnover and muscle growth in mammals. In: Goldspink DF (eds) Development and Specialization of Skeletal Muscles. Cambridge, University Press, pp 65–89

    Google Scholar 

  • Gutmann E, Melichna J, Syrovy I (1974) Developmental changes in the contraction time, myosin properties and fibre pattern of fast and slow skeletal muscles. Physiol Bohemoslov 23:19–27

    PubMed  CAS  Google Scholar 

  • Hanoune J, Chambaut AM, Josipowicz A (1972) The glucose effect and cortisone action upon rat liver and muscle protein metabolism. Arch Biochem Biophys 148:180–184

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WJ, Boyd JD, Mossman HW (1972) Human embryology. W. Heffer and Sons, Ltd., Cambridge

    Google Scholar 

  • Jirmanová I, Zelená J (1980) Stress as a possible pathogenic factor in the “splayleg” disease. Physiol Bohemoslov 29:447

    Google Scholar 

  • Kelly AM, Zacks SI (1974) The histogenesis of rat intercostal muscle. J Cell Biol 42:135–153

    Article  Google Scholar 

  • Koski C, Rifenberick D, Max S (1974) Oxidative metabolism of skeletal muscle in steroid atrophy. Arch Neurol 31:407–410

    PubMed  CAS  Google Scholar 

  • Kostyo JL, Redmond AF (1966) Role of protein synthesis in the inhibitory action of adrenal steroid hormones on aminoacid transport muscle. Endocrinology 79:531–540

    Article  PubMed  CAS  Google Scholar 

  • Malencik DA, Heizmann CW, Fischer EH (1975) Structural proteins of dogfish skeletal muscle. Biochemistry 14:715–721

    Article  PubMed  CAS  Google Scholar 

  • Massa EM, Morero RD, Bloj D, Farrias RN (1975) Hormone action and membrane fluidity: effect of insulin and cortisol on the Hill coefficients of rat erythrocyte membrane bound acetylcholinesterase and (Na+ + K+) — ATPase. Biochem Biophys Res Commun 66:115–122

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Amin R, Shafrir E (1974) Rat myofibrillar protease: enzyme properties and adaptive changes in conditions of muscle protein degradation. Arch Biochem Biophys 161:20–25

    Article  CAS  Google Scholar 

  • Mayer M, Amin R, Milholland RJ, Rosen F (1976) Possible significance of myofibrillar protease in muscle catabolism. Enzyme activity in dystrophia, tumor-bearing and glucocorticoid-treated animals. Exp Mol Pathol 25:9–19

    Article  PubMed  CAS  Google Scholar 

  • Melnykovych G, Matthews E, Gray L, Lopez I (1976) Inhibition of cholesterol biosynthesis in HeLa cells by glucocorticoids. Biochem Biophys Res Commun 71:506–512

    Article  PubMed  CAS  Google Scholar 

  • Milward DJ, Garlick PJ, Nnanyelugo DO, Waterlow JC (1976) The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem J 156:185–188

    Google Scholar 

  • Ontell M (1977) Neonatal muscle. An electron microscopic study. Anat Rec 189:669–690

    Article  PubMed  CAS  Google Scholar 

  • Peter JB, Verhaag DA, Worsfold M (1970) Studies of steroid myopathy. Examination of the effect of triamcinolone on mitochondria and sarcotubular vesicles of rat skeletal muscle. Biochem Pharmacol 19:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Pleasure DE, Walsh GO, Engel WK (1970) Atrophy of skeletal muscle in patients with Cushing’s syndrome. Arch Neurol 22:118–125

    PubMed  CAS  Google Scholar 

  • Shiverick KT, Thomas LL, Alpert NR (1975) Purification of cardiac myosin: application of hypertrofied myocardium. Biochim Biophys Acta 393:124–133

    PubMed  CAS  Google Scholar 

  • Shoji S (1975) Experimental study of steroid myopathy. Adv Neurol 19:157–167

    Google Scholar 

  • Shoji S, Pennington RJT (1977) Bindings of dexamethasone and cortisol to cytosol receptors in rat extensor digitorum longus and soleus muscles. Exp Neurol 57:342–348

    Article  PubMed  CAS  Google Scholar 

  • Shoji S, Takagi A, Sugati H, Toyokura Y (1976) Dysfunction of sarcoplasmic reticulum in rabbit and human steroid myopathy. Exp Neurol 51:304–309

    Article  PubMed  CAS  Google Scholar 

  • Simpson P, White AM (1973) Binding of glucocorticoids to a soluble fraction from rat skeletal muscle. Biochem Pharmacol 22:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Smith B (1964) Histological and histochemical changes in the muscles of rabbits given the corticosteroid triamcinolone. Neurology (Minneap.) 14:857–863

    CAS  Google Scholar 

  • Strandberg B (1962) The frequency of myopathy in patients with rheumatic arthritis treated with triamcinolone. Acta Rheumatol Scand 8:31–44

    Article  PubMed  CAS  Google Scholar 

  • Tice LW, Engel AG (1967) The effects of glucocorticoids on red and white muscles in the rat. Am J Pathol 50:311–333

    PubMed  CAS  Google Scholar 

  • Tu SH, Norquist RE, Griffin MJ (1972) Membrane changes in HeLa cells grown with cortisol. Biochem Biophys Acta 290:92–109

    Article  PubMed  CAS  Google Scholar 

  • Vignos PJ Jr, Greene R (1973) Oxidative respiration of skeletal muscle in corticosteroid myopathy. J Lab Clin Med 81:365–378

    PubMed  CAS  Google Scholar 

  • Zelená J, Jirmanová I (1979) Degenerative changes in skeletal muscles of piglets with congenital myofibrillar hypoplasia. Zentralbl Veterinärmed [A] 26:652–665

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirmanová, I., Soukup, T. & Zelená, J. The pathomorphology of developing skeletal muscles of rabbits treated with glucocorticoids. Virchows Archiv B Cell Pathol 38, 323–335 (1981). https://doi.org/10.1007/BF02892828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02892828

Key words

Navigation