Skip to main content
Log in

Crop mimicry in weeds

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

The selective forces imposed by agricultural practices have resulted in the evolution of agricultural races of weeds or agroecotypes. Some agroecotypes are intimately associated with a specific crop. Such associations can involve a system of mimicry, whereby the weed resembles the crop at specific stages during its life history and, as a result of mistaken identity, evades eradication. Mimetic forms of weeds are most likely to be selected by handweeding of seedlings or by harvesting and seed cleaning procedures. A striking example of morphological and phenological resemblance is found in the cultivated rice mimic,Echinochloa crus-galli var.oryzicola, a native of Asian rice fields but now widely distributed in rice-growing areas of the world. Comparative studies of the growth, devel-opment and patterns of phenotypic variation of cultivated rice,E. crus-galli var.oryzicola andE. crus-galli var.crus-galli demonstrate that the crop mimic is more similar to rice in many attributes than it is to its close relative. It is proposed that intense handweeding practices in Asia constitute the main selective force favoring the evolution of rice mimicry inE. crus-galli var.oryzicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allard, R. W., R. D. Miller, and A. L. Kahler. 1978. The relationship between degree of environmental heterogeneity and genetic polymorphism.In Structure and Functioning of Plant Populations, A. H. J. Freyson and J. W. Woldendorp, ed, p. 49–69. North-Holland, Amsterdam.

    Google Scholar 

  • Anderson, E. 1952. Plants, Man and Life. Univ. California Press, Berkeley.

    Google Scholar 

  • Assemat, L., and H. I. Oka. 1980. Neighbour effects between rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv.) strains. I. Aggressiveness and resistance to aggression as influenced by planting density. Acta Oecol./Oecol. Plant. 1: 371–394.

    Google Scholar 

  • —, H. Morishima, and H. I. Oka. 1981. Neighbour effects between rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli (Beauv.) strains. II. Some experiments on the mechanisms of interactions between plants. Acta Oecol./Oecol. Plant 2: 63–78.

    Google Scholar 

  • Ayyangar, G. N. R., U. P. Rao, and T. V. Reddy. 1936. The inheritance of deciduousness of the pedicelled spikelets of sorghum. Curr. Sci. 5: 538.

    Google Scholar 

  • Bachthaler, G. 1969. Development of the weed flora in Germany in relation to changes in method of cultivation. Angew. Bot. 43: 59–69.

    Google Scholar 

  • Baker, H. G. 1965. Characteristics and modes of origins of weeds.In The Genetics of Colonizing Species, H. G. Baker and G. L. Stebbins, ed, p. 147–172. Academic Press, New York.

    Google Scholar 

  • —. 1972. Migration of weeds.In Taxonomy, Phytogeography and Evolution, D. H. Valentine, ed, p. 327–347. Academic Press, London.

    Google Scholar 

  • —. 1974. The evolution of weeds. Annual Rev. Ecol. Syst. 5: 1–24.

    Google Scholar 

  • Bandeen, J. D., and R. D. McLaren. 1976. Resistance ofChenopodium album to triazine herbicides. Canad. J. PI. Sci. 56: 411–12.

    CAS  Google Scholar 

  • Barrett, S. C. H. 1982. Genetic variation in weeds.In Biological Control of Weeds with Plant Pathogens, R. Charudattan and H. Walker, ed, p. 73–98. Wiley, New York.

    Google Scholar 

  • —, and D. E. Seaman. 1980. The weed flora of Californian rice fields. Aquatic Bot. 9: 351–376.

    Google Scholar 

  • —, and B. F. Wilson. 1981. Colonizing ability in theEchinochloa crus-galli complex (barnyard grass). I. Variation in life history. Canad. J. Bot 59: 1844–1860.

    Google Scholar 

  • —, and —. 1983. Colonizing ability in theEchinochloa crus-galli complex (barnyard grass). II. Seed biology. Canad. J. Bot. 61: 556–562.

    Google Scholar 

  • Bellue, M. K. 1932. Weeds of Californian seed rice. Monthly Bull. Calif. Dept. Agric. 21: 290–296.

    Google Scholar 

  • Bilquez, A. F., and J. Lecomte. 1969. Relations entre mils sauvage et mils cultives: etude de L’hybridePennisetum typhoides Stapf. & Hubb. ×P. violaceum (Lam.) L. Rieh. Agron. Trop. 24: 249–257.

    Google Scholar 

  • Bleier, H. 1929. Cytological investigation ofLens-Vicia hybrids. Genetica 11: 111–118.

    Google Scholar 

  • Brown, A. H. D., E. Nevo, D. Zohary, and O. Dagan. 1978. Genetic variation in natural populations of wild barley (Hordeum spontaneum). Genetica 49: 97–108.

    Google Scholar 

  • —, and D. R. Marshall. 1981. Evolutionary changes accompanying colonization in plants.In Evolution Today, G. G. E. Scudder and J. L. Reveal, ed, Proc. Second Int. Cong. Syst. and Evol. Biol., p. 351–353. Vancouver, British Columbia.

    Google Scholar 

  • Brunken, J., J. M. J. deWet, and J. R. Harlan. 1977. The morphology and domestication of pearl millet. Econ. Bot. 31: 163–174.

    Google Scholar 

  • Bunting, A. H. 1960. Some reflections on the ecology of weeds.In The Biology of Weeds, J. L. Harper, ed, Blackwell, Oxford.

    Google Scholar 

  • Chirila, C., and A. Melachrinos. 1976. La flora vascolare delle risaie romene. Riso 15: 83–86.

    Google Scholar 

  • Chu, Y., and H. I. Oka. 1970. Introgression across isolating barriers in wild and cultivatedOryza species. Evolution 24: 344–355.

    Google Scholar 

  • Cohen, D. 1966. Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12: 119–129.

    PubMed  CAS  Google Scholar 

  • Crawford, D. J., and H. D. Wilson. 1977. Allozyme variation inChenopodium fremontii. Syst. Bot. 2: 180–190.

    Google Scholar 

  • —, and —. 1979. Allozyme variation in several closely related diploid species ofChenopodium of the western United States. Amer. J. Bot. 66: 237–244.

    Google Scholar 

  • Dave, B. B. 1943. The wild rice problem in the Central Provinces and its solution. Indian J. Agric. Sci. 13: 46–53.

    Google Scholar 

  • de Wet, J.M.J., J. R. Harlan, and E. G. Price. 1976. Variability inSorghum bicolor. In Origins of African Plant Domestication, J. R. Harlan, J. M. J. de Wet, and A. B. L. Stemler, ed, p. 453–464. Mouton, The Hague.

    Google Scholar 

  • Dmitriev, V.S. 1952. Concerning the primary source of origin of the flat-seeded vetch. Agrobiologija 1: 39–43.

    Google Scholar 

  • Doggett, H., and N. Majisu. 1968. Disruptive selection in crop development. Heredity 23: 1–23.

    Google Scholar 

  • Ehara, K., and S. Abe. 1950. Classification of the forms in the wild Japanese barnyard millet. Proc. Crop. Sci. Soc. Jap. 20: 245–246.

    Google Scholar 

  • Fryer, J. D., and R. J. Chancellor. 1970. Herbicides and our changing weeds.In The Flora of a Changing Britain, Perring, F.H., ed, p. 105–118. Classey, Hampton.

    Google Scholar 

  • Godwin, H. 1960. The history of weeds in Britain.In The Biology of Weeds, J. L. Harper, ed. p. 1–10. Blackwell, Oxford.

    Google Scholar 

  • Gould, F.W., M. A. Ali, and D. E. Fairbrothers. 1974. A revision ofEchinochloa in the United States. Amer. Midi. Naturalist 87: 36–59.

    Google Scholar 

  • Gregor, J.W. 1938. Reflections concerning new crop varieties. Herbage Rev. 6: 234–239.

    Google Scholar 

  • —, and F. W. Sansome. 1927. Experiments on the genetics of wild populations. I. Grasses. J. Genet. 17: 349–364.

    Google Scholar 

  • Gressel, J., and L. A. Segel. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75: 349–371.

    PubMed  CAS  Google Scholar 

  • Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Naturalist 111: 1169–1194.

    Google Scholar 

  • Grist, D. H. 1953. Rice. Longman, London.

  • Hammerton, J.L. 1968. Past and future changes in weed species and weed floras. Proc. 9th British Weed Control Conf. 3: 1136–1146.

    Google Scholar 

  • Hamrick, J.L., Y. B. Linhart, and J. B. Mitton. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annual Rev. Ecol. Syst. 10: 173–200.

    Google Scholar 

  • Hanson, N.S. 1962. Weed control practices and research for sugar cane in Hawaii. Weeds 10: 192–209.

    Google Scholar 

  • Harlan, H.V. 1929. The weedishness of wild oats. J. Heredity 20: 515–518.

    Google Scholar 

  • Harlan, J.R. 1970. The evolution of cultivated plants.In Genetic Resources in Plants—their Exploration and Conservation, O. H. Frankel, and E. Bennett, ed, p. 19–32. Blackwell, Oxford.

    Google Scholar 

  • -. 1975. Crops and Man. Amer. Soc. Agron., Madison, WI.

  • -. 1981. The relationships between weeds and crops, (unpublished ms.).

  • —, J. M. J. de Wet, and E. G. Price. 1973. Comparative evolution of cereals. Evolution 27: 311–325.

    Google Scholar 

  • Harper, J.L. 1956. The evolution of weeds in relation to resistance to herbicides. Proc. 3rd British Weed Control Conf. 1: 179–186.

    Google Scholar 

  • —. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Heiser, C.B., and D. C. Nelson. 1974. On the origin of the cultivated chenopods (Chenopodium). Genetics 78: 503–505.

    Google Scholar 

  • Hillman, G. 1981. Cereal remains from Tell Ilbol and Tell Qaramel.In The River Qoueiq, Northern Syria, and its Catchment, J. Matthers, ed, p. 503–507. B.A.R. International Series 98. B.A.R., Oxford.

    Google Scholar 

  • Hitrovo, V. 1912. Sur la voilure des organes de propagation des plantes messicoles de niveaux differents. Bull. Angew. Bot. 5: 103–138.

    Google Scholar 

  • Holliday, R.J., and P. D. Putwain. 1974. Variation in susceptibility to simazine in three species of annual weeds. Proc. British Weed Control Conf. 12: 649–654.

    Google Scholar 

  • —, and —. 1977. Evolution of resistance to simazine inSenecio vulgaris L. Weed Res. 17: 291–296.

    CAS  Google Scholar 

  • —, and —. 1980. Evolution of herbicide resistance inSenecio vulgaris: variation in susceptibility to simazine between and within populations. J. Appl. Ecol. 17: 779–792.

    Google Scholar 

  • Holm, L.G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. 1977. The World’s Worst Weeds: Distribution and Biology. Univ. Hawaii Press, Honolulu.

    Google Scholar 

  • Imam, M., and J. Kosinova. 1972. Studies on the weed flora of cultivated land in Egypt. Weeds of rice fields. Bot. Jahrb. Syst. 92: 90–107.

    Google Scholar 

  • Jain, S.K. 1969. Comparative ecogenetics of twoAvena species occurring in central California. Evol. Biol. 3: 73–118.

    Google Scholar 

  • Johnston, S.K., D. S. Murray, and J. Williams. 1979. Germination and emergence of balloonvine (Cardiospermum halicacabuni). Weed Sci. 27: 73–76.

    Google Scholar 

  • Kalachevska, K. 1929. The mimicry of weeds. Acad. Sci. Ukraine. Kieff. Bull. Cl. Sci. Phys. Math. 4: 67–71.

    Google Scholar 

  • Karper, R.E., and J. R. Quinby. 1947. The inheritance of callus formation and seed shedding in sorghum. J. Heredity 38: 211–219.

    CAS  Google Scholar 

  • Kasahara, Y., and O. Kinoshita. 1952. Studies on the control of the barnyard grass on the paddy field. Proc. Crop. Sci. Soc. Jap. 21: 319–320.

    Google Scholar 

  • Kennedy, R.A., S. C. H. Barrett, D. VanderZee, and M. E. Rumpho. 1980. Germination and seedling growth under anaerobic conditions inEchinochloa crus-galli (barnyard grass). Pl. Cell Environment 3: 243–249.

    Google Scholar 

  • King, L.J. 1966. Weeds of the World: Biology and Control. Hill, London.

    Google Scholar 

  • Kordan, H.A. 1972. Rice seedlings germinated in water with normal and impeded environmental gas exchange. J. Appl. Ecol. 9: 527–533.

    Google Scholar 

  • —. 1974. The rice shoot in relation to oxygen supply and root growth in seedlings germinating under water. New Phytol. 73: 695–697.

    Google Scholar 

  • Ladizinsky, G. 1975. Oats in Ethiopia. Econ. Bot. 29: 238–241.

    Google Scholar 

  • Levin, D.A. 1975. Genie heterozygosity and protein polymorphism among local populations ofOenothera biennis. Genetics 79: 477–491.

    PubMed  CAS  Google Scholar 

  • McNeill, J. 1976. The taxonomy and evolution of weeds. Weed Research 16: 399–413.

    Google Scholar 

  • Maltais, B., and C. J. Bouchard. 1978. Une moutarde des oiseaux (Brassica rapa L.) resistance a l’atrazine. Phytoprotection 59: 117–119.

    Google Scholar 

  • Michael, P. 1973. Barnyard grass (Echinochloa) in the Asian-Pacific region, with special reference to Australia. Proc. 4th Asian-Pacific Weed Sci. Soc. Conf. Rotorua.

  • Monsi, M., Z. Uchijima, and T. Oikawa. 1973. Structure of foliage canopies and photosynthesis. Annual Rev. Ecol. Syst. 4: 301–328.

    Google Scholar 

  • Moran, G.F., and D. R. Marshall. 1978. Allozyme uniformity within and variation between races of the colonizing speciesXanthium strumarium L. (Noogoora Burr). Austral. J. Biol. Sci. 31: 283–291.

    CAS  Google Scholar 

  • Morishima, H., H. I. Oka, and W. T. Chang. 1961. Directions of differentiation in populations of wild rice.Oryza perennis andO. sativa f.spontanea. Evolution 15: 326–339.

    Google Scholar 

  • —, K. Hinata, and H. I. Oka. 1963. Comparison of modes of evolution of cultivated forms from two wild rice species,Oryza breviligulata andO. perennis. Evolution 17: 170–181.

    Google Scholar 

  • Nelson, A.P. 1965. Taxonomic and evolutionary implications of lawn races inPrunella vulgaris (Labiatae). Brittonia 17: 160–174.

    Google Scholar 

  • Nevo, E., D. Zohary, A. H. D. Brown, and M. Haber. 1979. Genetic diversity and environmental associations of wild barleyHordeum spontaneum in Israel. Evolution 33: 815–833.

    CAS  Google Scholar 

  • Oka, H.I., and W. T. Chang. 1959. The impact of cultivation on populations of wild rice,Oryza sativa f. spontanea. Phyton 13: 105–117.

    Google Scholar 

  • —, and —. 1961. Hybrid swarms between wild and cultivated rice species,Oryza perennis andO. sativa. Evolution 15: 418–430.

    Google Scholar 

  • Oliveira, L. 1977. Changes in ultrastructure of mitochondria of roots ofTriticale subjected to anaerobiosis. Protoplasma 91: 267–280.

    CAS  Google Scholar 

  • Parker, C. 1977. Prediction of new weed problems, especially in the developing world.In Origins of Pest, Parasite, Disease and Weed Problems, J. M. Cherrett and G. R. Sagar, ed, p. 249–264. Blackwell, Oxford.

    Google Scholar 

  • —, and M. L. Dean. 1976. Control of wild rice in rice. Pestic. Sci. 7: 403–416.

    CAS  Google Scholar 

  • Pickersgill, B.P. 1981. Biosystematics of crop-weed complexes.In European Land Races of Cultivated Plants and their Evaluation, P. Hanelt, ed, Akademia Verlag, Berlin.

    Google Scholar 

  • Pradet, A., and J. L. Bomsel. 1978. Energy metabolism in plants under hypoxia and anoxia.In Plant Life in Anaerobic Environments, D. D. Hook and R. M. M. Crawford, ed, p. 89–118. Ann Arbor Science Publications, Ann Arbor, MI.

    Google Scholar 

  • Purseglove, J.W. 1972. Tropical Crops: Monocotyledons 1. Longman, London.

    Google Scholar 

  • Radosevich, S.R. 1977. Mechanism of atrazine resistance in lambsquarters and pigweed. Weed Sci. 25: 316–318.

    CAS  Google Scholar 

  • Ramakrishnan, P.S. 1968. Nutritional requirements of the edaphic ecotypes inMelilotus alba. New Phytol. 67: 147–157.

    Google Scholar 

  • —, and U. Gupta. 1973. Nitrogen, phosphorus and potassium nutrition in the edaphic ecotypes inCynodon dactylon (L.) Pers. Ann. Bot. 37: 885–894.

    CAS  Google Scholar 

  • —, and R. S. Jain. 1965. Differential response to calcium and growth yield of the edaphic ecotypes ofTridax procumbens L. J. Indian Bot. Soc. 44: 439–452.

    Google Scholar 

  • Rowlands, D.G. 1959. A case of mimicry in plants—Vicia sativa L. in lentil crops. Genetica 30: 435–446.

    PubMed  CAS  Google Scholar 

  • Rumpho, M.E., and R. A. Kennedy. 1981. Anaerobic metabolism in germinating seeds ofEchinochloa crus-galli (barnyard grass). Metabolite and enzyme studies. PI. Physiol. 68: 165–168.

    Article  CAS  Google Scholar 

  • Salisbury, E.J. 1961. Weeds and Aliens. Collins, London.

    Google Scholar 

  • Sauer, J.D. 1967. The grain amaranths and their relatives—a revised taxonomic and geographic survey. Ann. Missouri Bot. Gard. 54: 103–137.

    Google Scholar 

  • Schwanitz, F. 1966. The Origin of Cultivated Plants. Harvard Univ. Press, Cambridge, MA.

    Google Scholar 

  • Sculthorpe, C.D. 1928. The Biology of Aquatic Vascular Plants. Arnold, London.

    Google Scholar 

  • Sinskaia, E.N. 1928. The oleiferous plants and root crops of the family Cruciferae. Trudy Prikl. Bot. 19: 1–619.

    Google Scholar 

  • —. 1931. The study of species in their dynamics and interrelation with different types of vegetation. Trudy Prikl. Bot. 25: 1–97.

    Google Scholar 

  • —, and A. A. Beztuzheva. 1931. The forms ofCamelina sativa in connection with climate, flax and man. Trudy Prikl. Bot. 25: 98–200.

    Google Scholar 

  • Small, E. 1975. The case of the curious“Cannabis”. Econ. Bot. 29: 254.

    Google Scholar 

  • Smith, R.J., and W. T. Fox. 1973. Soil and water and growth of rice and weeds. Weed Science 21: 61–63.

    Google Scholar 

  • —, W. T. Flinchum, and D. E. Seaman. 1977. Weed control in U.S. rice production. USDA Agric. Handbook No. 497. Gov. Printing Office, Washington, DC.

    Google Scholar 

  • Snaydon, R.W. 1970. Rapid population differentiation in a mosaic environment I. The response ofAnthoxanthum odoratum populations to soils. Evolution 24: 257–269.

    Google Scholar 

  • —. 1978. Genetic changes in pasture populations.In Plant Relations in Pastures, J. R. Wilson, ed, p. 253–269. CSIRO, Melbourne.

    Google Scholar 

  • —. 1980. Plant demography in agricultural systems.In Demography and Evolution in Plant Populations, O. T. Solbrig, ed, p. 131–160. Botanical Monographs Vol. 15. Univ. California Press, Berkeley.

    Google Scholar 

  • —, and M. S. Davies. 1972. Rapid population differentiation in a mosaic environment. II. Morphological variation. Evolution 26: 390–405.

    Google Scholar 

  • Solbrig, O.T., and B. B. Simpson. 1974. Components of regulation of a population of dandelions in Michigan. J. Ecol. 62: 473–486.

    Google Scholar 

  • Souza Machado, V., J. D. Bandeen, W. D. Taylor, and P. Lavigne. 1977. Atrazine resistant biotypes of common ragweed and birds rape. Res. Rep. Canad. Weed Comm. (East Sec.) 22: 305.

    Google Scholar 

  • Stapledon, R.G. 1928. Cocksfoot grass (Dactylis glomerata L.) ecotypes in relation to the biotic factor. J. Ecol. 16: 71–104.

    Google Scholar 

  • Stebbins, G.L. 1950. Variation and Evolution in Plants. Columbia Univ. Press, New York.

    Google Scholar 

  • Steenis, C. G. G. J. Van. 1957. Specific and infraspecific delimitation. Flora Malesiana ser. 1. 5.

  • Tedin, O. 1925. Verebung, Variation, und Systematik in der GattungCamelina. Hereditas 6: 275–386.

    Article  Google Scholar 

  • Turner, J.R.G. 1971. Studies of Mullerian mimicry and its evolution in burnet moths and heliconid butterflies.In Ecological Genetics and Evolution, R. Creed, ed, p. 224–260. Blackwell, Oxford.

    Google Scholar 

  • VanderZee, D., and R. A. Kennedy. 1981. Germination and seedling growth inEchinochloa crusgalli var.oryzicola under anoxic conditions: structural aspects. Amer. J. Bot. 68: 1269–1277.

    CAS  Google Scholar 

  • Vane-Wright, R.I. 1976. A unified classification of mimetic resemblances. Linn. Soc., Bio. 8: 25–56.

    Google Scholar 

  • Vartapetian, B.B., I. N. Andreeva, and N. Nuritdinov. 1978. Plant cells under oxygen stress.In Plant Life in Anaerobic Environments, D. D. Hook and R. M. M. Crawford, ed, p. 13–88. Ann Arbor Science Publications, Ann Arbor, MI.

    Google Scholar 

  • Vasinger-Alektrova, A.V. 1931. The weeds of rice in the southern part of the maritime region in the Far East. Trudy Prikl. Bot. 25: 109–152.

    Google Scholar 

  • Vavilov, N.I. 1949. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13: 1–364.

    Google Scholar 

  • Warwick, S.I., and L. Black. 1980. Uniparental inheritance of atrazine resistance inChenopodium album. Canad. J. PI. Sci. 60: 751–753.

    Article  CAS  Google Scholar 

  • —, and D. Briggs. 1978a. The genecology of lawn weeds. I. Population differentiation inPoa annua L. in a mosaic environment of bowling green lawns and flower beds. New Phytol. 81: 711–723.

    Google Scholar 

  • —, and —. 1978b. The genecology of lawn weeds. II. Evidence for disruptive selection inPoa annua L. in a mosaic environment of bowling green lawns and flower beds. New Phytol. 81: 725–737.

    Google Scholar 

  • —, and —. 1980. The genecology of lawn weeds. V. The adaptive significance of different growth habits in lawn and roadside populations ofPlantago major L. New Phytol. 85: 289–300.

    Google Scholar 

  • —, V. Souza Machado, P. B. Marriage, and J. D. Bandeen. 1979. Resistance ofChenopodium strictum Roth (late-flowering goosefoot) to atrazine. Canad. J. PI. Sci. 59: 269–270.

    CAS  Google Scholar 

  • Wiens, D. 1978. Mimicry in plants. Evol. Biol. 11: 365–403.

    Google Scholar 

  • Welch, G.B. 1954. Seed processing equipment. Mississippi Agric. Exp. Sta. Bull. 520.

  • Whalen, M.D. 1979. Allozyme variation and evolution inSolarium section Androceras. Syst. Bot. 4: 203–222.

    CAS  Google Scholar 

  • Wickler, W. 1968. Mimicry in Plants and Animals. McGraw-Hill, New York.

    Google Scholar 

  • Wilkes, H.G. 1967. Teosinte: the Closest Relative of Maize. Bussey Inst. Harvard Univ. Cambridge, MA.

    Google Scholar 

  • —. 1977. Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Econ. Bot. 31: 254–293.

    Google Scholar 

  • Wilson, H.D., and C. B. Heiser. 1979. The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nutalliae Safford), domesticated chenopod of Mexico. Amer. J. Bot. 66: 198–206.

    Google Scholar 

  • Yabuno, T. 1961.Oryza sativa andEchinochloa crus-galli var.oryzicola Ohwi. Rep. Kihara Inst. Bio. Res. 12: 29–34.

    Google Scholar 

  • —. 1966. Biosystematic study of the genusEchinochloa. Jap. J. Bot. 19: 277–323.

    Google Scholar 

  • Zinger, H.B. 1909. On the species ofCamelina andSperguiaria occurring as weeds in sowings of flax and their origin. Trudy Bot. Muz. Imp. Akad. Nauk 6: 1–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, S.H. Crop mimicry in weeds. Econ Bot 37, 255–282 (1983). https://doi.org/10.1007/BF02858881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858881

Keywords

Navigation