Skip to main content
Log in

Events following ABA treatment of spruce somatic embryos

  • Physiology
  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Abscisic acid (ABA) is involved in various physiological processes in plant growth and in the development of embryos and the maturation of seed. There is still much to learn about the influence of ABA on regulation of gene expression during plant and seed development. Perhaps not surprisingly, ABA has a major role in the stimulation of somatic embryo maturation in several conifer species, especially spruces. In spite of this, our knowledge of the effects of exogenous ABA is incomplete, for example the effect of ABA concentration on its uptake and fate has rarely been investigated during somatic embryo culture, and our knowledge of molecular events in conifer somatic embryo development is very scant. The intent of this review is to summarize some of the recent research in spruce somatic embryo development related to the use of ABA and to the consequence of its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, S. R.; Rose, P. A.; Cutler, A. J., et al. 8′-Methylene ABA—an effective and persistent analog of abscisic acid. Plant Physiol. 114:89–97; 1997.

    PubMed  CAS  Google Scholar 

  • Astle, M. C.; Rubery, P. H. Carriers for abscisic acid and indole-3-acetic acid in primary roots: their regional localization and thermodynamic driving forces. Planta 157:53–63; 1983.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult. 35:1–35; 1993.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Moore, D.; Sawhney, V. K., et al. Enhanced maturation and desiccation tolerance of white sprucePicea glauca (Moench) Voss somatic embryos: effects of a nonplasmolysing water stress and abscisic acid. Ann. Bot. 68:519–526; 1991.

    Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404; 1992.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Production of vigorous desiccation tolerant white spruce (Picea glauca (Moench.) Voss.) synthetic seeds in a bioreactor. Plant Cell Rep. 13:601–606; 1994.

    Article  Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Development of white spruce (Picea glauca (Moench.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46:433–439; 1995.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Tautorus, T. A.; Dunstan, D. I., et al. Somatic embryo maturation, germination and soil establishment of plants of black and white spruce (Picea mariana andPicea glauca). Can. J. Bot. 68:2583–2589; 1990.

    Google Scholar 

  • Balsevich, J. J.; Cutler, A. J.; Lamb, N., et al. Response of cultured maize cells to (+)-abscisic acid, (−)-abscisic acid, and their metabolites. Plant Physiol. 106:35–142; 1994b.

    Google Scholar 

  • Balsevich, J. J.; Lamb, N.; König, W., et al. Identification of unnatural phaseic acid as a metabolite derived from exogenously added (−)-abscisic acid in a maize cell suspension culture. Phytochemistry 36:647–650; 1994a.

    Article  CAS  Google Scholar 

  • Beardmore, T.; Charest, P. J. Black spruce somatic embryo germination and desiccation tolerance. II. Effect of an abscisic acid treatment on protein synthesis. Can. J. For. Res. 25:1773–1782; 1995.

    CAS  Google Scholar 

  • Bewley, J.; Black M., Seeds, physiology of development and germination. New York: Plenum Press; 1994.

    Google Scholar 

  • Bianco-Colomas, J.; Barthe, P.; Orlandini, M., et al. Carrier-mediated uptake of abscisic acid by suspension-culturedAmaranthus tricolor cells. Plant Physiol. 95:990–996; 1991.

    PubMed  CAS  Google Scholar 

  • Black, M. Involvement of ABA in the physiology of developing and mature seeds. In: Davies, W. J.; Jones, H. G., eds. Abscisic acid: physiology and biochemistry. Oxford, UK: Bios Scientific Publishers; 1991:99–104.

    Google Scholar 

  • Bond, U.; Schlesinger, M. J. Heat shock and development. Adv. Genet. 24:1–29; 1987.

    PubMed  CAS  Google Scholar 

  • Bostock, R. M.; Quatrano, R. S. Regulation ofEm gene expression in rice. Interaction between osmotic stress and abscisic acid. Plant Physiol. 98:1356–1363; 1992.

    PubMed  CAS  Google Scholar 

  • Bucciaglia, P. A.; Smith, A. G. Cloning and characterization ofTag1, a β-1,3-glucanase expressed during tetrad dissolution. Plant Mol. Biol. 24:903–914; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Carrier, D.-J.; Bock, C. A.; Cunningham, J. E., et al. (+)-ABA content and lipid deposition in interior spruce somatic embryos. In Vitro Cell Dev. Biol.—Plant 33:236–239; 1997.

    Article  CAS  Google Scholar 

  • Castresana, C.; de Carvalho, F.; Gheysen, G., et al. Tissue-specific and pathogen-induced regulation of aNicotiana plumbaginifolia β-1,3-lgucanase gene. Plant Cell 2:1131–1143; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, P. M.; Robertson, M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:113–141; 1994.

    Article  CAS  Google Scholar 

  • Churchill, G. C.; Ewan, B.; Reaney, M. J. T., et al. Structure-activity relationships of abscisic acid analog based on the induction of freezing tolerance in bromegrass (Bromus innermis Leyss) cell cultures. Plant Physiol. 100:2024–2029; 1992.

    PubMed  CAS  Google Scholar 

  • Close, T. J.; Fenton, R. D.; Moonan, F. A view of plant dehydrins using antibodies specific to the carboxy-terminal peptide. Plant Mol. Biol. 23:279–286; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Daeter, W.; Hartung, W. The permeability of the epidermal cell plasma membrane of barley leaves to abscisic acid. Planta 191:41–47; 1993.

    Article  CAS  Google Scholar 

  • de Jong, A. J.; Cordewener, J.; Schiavo, F. L., et al. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433; 1992.

    Article  PubMed  Google Scholar 

  • de Jong, A. J.; Hendriks, T.; Meijer, E. A., et al. Transient reduction in secreted 32 KDa chitinase prevents somatic embryogenesis in carrot (Daucus carota L.) variantts11. Dev Genet. 16:332–343; 1995.

    Article  Google Scholar 

  • de Vries, S. C.; Booij, H.; Meyerink, P., et al. Acquisition of embryogenic potential in carrot cell suspension cultures. Planta 176:196–204; 1988.

    Article  Google Scholar 

  • Domon, J.-M.; Meyer, Y.; Faye, L., et al. Extracellular (glyco)proteins in embryogenic and non-embryogenic cell lines of Caribbean pine. Comparison between phenotypes of Stage one somatic embryos. Plant Physiol. & Biochem. 32:137–147; 1994.

    CAS  Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199:469–476; 1996a.

    Article  Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Characterization of three heat shock protein genes and their developmental regulation during somatic embryogenesis in white spruce (Picea glauca). Planta 200:85–91; 1996b.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Endochitinase and β-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in white spruce. Planta 201:189–194; 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J.-Z.; Dunstan, D. I. Characterization of cDNAs representing five abscisic acid-responsive genes associated with somatic embryogenesis inPicea glauca and their responses to abscisic acid stereostructure. Planta 203:448–453; 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J.-Z.; Perras, M. R.; Abrams, S. R. et al. ABA uptake, metabolism and induced gene expression in embryogenic suspension cultures of white spruce (Picea glauca). Proc. Plant Growth Reg. Soc. America; 1994b;96–105.

  • Dong, J.-Z.; Perras, M. R.; Abrams, S. R., et al. ABA uptake, metabolism and induced gene expression in embryogenic suspension cultures ofPicea glauca. Plant Physiol. & Biochem. 34:579–587; 1996.

    CAS  Google Scholar 

  • Dong, J.-Z.; Perras, M. R.; Abrams, S. R., et al. Gene expression patterns, and uptake and fate of fed ABA in white spruce somatic embryo tissues during maturation. J. Exp. Bot. 48:277–287; 1997.

    Article  CAS  Google Scholar 

  • Dong, J.-Z.; Pilate, G.; Abrams, S. R., et al. Induction of a wheatEm promoter by ABA and optically pure ABA analogs in white spruce (Picea glauca) protoplasts. Physiol. Plant. 90:513–521; 1994a.

    Article  CAS  Google Scholar 

  • Dronne, S.; Label, P.; Lelu, M.-A. Desiccation decreases abscisic acid content in hybrid larch (Larix × leptoeuropeaea) somatic embryos. Physiol. Plant. 99:433–438; 1997.

    Article  CAS  Google Scholar 

  • Dunstan, D. I.; Bekkaoui, F.; Pilon, M., et al. Effects of abscisic acid and analogues on the maturation of white spruce (Picea glauca) somatic embryos. Plant Sci. 58:77–84; 1988.

    Article  CAS  Google Scholar 

  • Dunstan, D. I.; Berry, S.; Bock, C. A. ABA consumption in Norway spruce (Picea abies) and white spruce (Picea glauca) somatic embryo cultures. In Vitro Cell. Dev. Biol. 30P:56–59; 1994.

    Google Scholar 

  • Dunstan, D. I.; Bethune, T. D. Variation in maturation and germination from white spruce somatic embryos, as affected by age and use of solid or liquid culture. In Vitro Cell. Dev. Biol. 32P:165–170; 1996.

    Google Scholar 

  • Dunstan, D. I.; Bethune, T. D.; Abrams, S. R. Racemic abscisic acid and abscisyl alcohol promote maturation of white spruce (Picea glauca) somatic embryos. Plant Sci. 76:219–228; 1991.

    Article  CAS  Google Scholar 

  • Dunstan, D. I.; Bethune, T. D.; Bock, C. A. Somatic embryo maturation from long-term suspension cultures of white spruce (Picea glauca). In Vitro Cell. Dev. Biol. 29P:109–112; 1993.

    Google Scholar 

  • Dunstan, D. I.; Bock, C. A. Abscisic acid [(+)-ABA] content in white spruce somatic embryo tissues related to concentration of fed ABA. J. Plant Physiol. 150:691–696; 1997.

    CAS  Google Scholar 

  • Dunstan, D. I.; Bock, C. A.; Abrams, G. D., et al. Metabolism of (+)-and (−)-abscisic acid by somatic embryo suspension cultures of white spruce. Phytochemistry 31:1451–1454; 1992.

    Article  CAS  Google Scholar 

  • Dunstan, D. I.; Tautorus, T. E.; Thorpe, T. A. Somatic embryogenesis in woody plants. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:473–539.

    Google Scholar 

  • Dure, L. The LEA proteins of higher plants. In: Verma, D. P. S., ed. Controls of plant gene expression. London: CRC Press; 1993:325–335.

    Google Scholar 

  • Dure, L.; Crouch, M.; Harada, J., et al. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12:475–486; 1989.

    Article  CAS  Google Scholar 

  • Fincher, G. B. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Mol. Biol. 40:305–346; 1989.

    Article  CAS  Google Scholar 

  • Flinn, B. S.; Roberts, D. R.; Newton, C. H., et al. Storage protein gene expression in zygotic and somatic embryos of interior spruce. Physiol. Plant. 89:719–730; 1993.

    Article  CAS  Google Scholar 

  • Flinn, B. S.; Roberts, D. R.; Taylor, I. E. P. Evaluation of somatic embryos of interior spruce. Characterization and developmental regulation of storage proteins. Physiol. Plant. 82:624–632; 1991.

    Article  CAS  Google Scholar 

  • Galau, G. A.; Hughes, D. W.; Dure, L., III. Abscisic acid induction of cloned cotton late embryogenesis-abundant (lea) mRNAs. Plant Mol. Biol. 7:155–170; 1986.

    Article  CAS  Google Scholar 

  • Gatehouse, J. A.; Shirsat, A. H. Control of expression of seed storage protein genes. In: Verma, D. P. S., ed. Controls of plant gene expression. Boca Raton, FL: CRC Press; 1993:357–375.

    Google Scholar 

  • Goldberg, R. B.; Barker, S. J.; Perez-Grau, L. Regulation of gene expression during plant embryogenesis. Cell 56:149–160; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, P. K.; Timmis, R.; Pullman, G., et al. Development of an embryogenic system for automated propagation of forest trees. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants. Vol. 8. San Diego, CA: Academic Press; 1991:75.

    Google Scholar 

  • Györgyey, J.; Gartner, A.; Németh, K., et al. Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol. Biol. 16:999–1007; 1991.

    Article  PubMed  Google Scholar 

  • Hakman, I.; Stabel, P.; Engström, P., et al. Storage protein accumulation during zygotic and somatic embryo development inPicea abies (Norway spruce). Physiol. Plant. 80:410–445; 1990.

    Article  Google Scholar 

  • Hakman, I.; von Arnold, S. Somatic embryogenesis and plant regeneration from suspension cultures ofPinea glauca (white spruce). Physiol. Plant. 72:579–587; 1988.

    Article  CAS  Google Scholar 

  • Hetherington, A. M.; Quatrano, R. S. Action of ABA at the cellular level. New Phytol. 119:9–32; 1991.

    Article  CAS  Google Scholar 

  • Hird, D. L.; Worral, I. D.; Hodge, R., et al. The anther-specific protein encoded by theBrassica napus andArabidopsis thaliana A6 gene displays similarity to β-1,3-glucanase. The Plant Journal 4:1023–1033; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, E. P.; Gerring, S. L.; Corces, V. G. The ovarian, ecdysterone, and heat-shock-responsive promoters of theDrosophila melanogaster hsp27 gene react very differently to perturbations of DNA sequence. Mol. Cell. Biol. 7:973–981; 1987.

    PubMed  CAS  Google Scholar 

  • Høj, P. B.; Fincher, G. B. Molecular evolution of plant β-glucan endohydrolases. The Plant Journal 7:367–379; 1995.

    Article  PubMed  Google Scholar 

  • Hon, W.-C.; Griffith, M.; Mlynarz, A., et al. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 109:879–889; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, D. W.; Galau, G. A. Temporally modular gene expression during cotyledon development. Gene Development 3:358–369; 1989.

    Article  CAS  Google Scholar 

  • Jalonen, P.; von Arnold, S. Characterization of embryogenic cell lines ofPicea abies in relation to their competence for maturation. Plant Cell Rep. 10:384–387; 1991.

    Article  Google Scholar 

  • Jarvis, S. B.; Taylor, M. A.; MacLeod, M. R., et al. Cloning and characterization of the cDNA clones of three genes that are differentially expressed during dormany-breakage in the seeds of Douglas fir (Pseudotsuga menziesii). J. Plant Physiol. 147:559–566; 1996.

    CAS  Google Scholar 

  • Kaiser, W. M.; Hartung, W. Uptake and release of abscisic acid by isolated photoautotrophic mesophyll cells, depending on pH gradients. Plant Physiol. 68:202–206; 1981.

    PubMed  CAS  Google Scholar 

  • Kapik, R. H.; Dinus, R. J.; Dean, J. F. D. Abscisic acid and zygotic embryogenesis inPinus taeda. Tree Physiol. 15:465–490; 1995.

    Google Scholar 

  • Kermode, A. R. Regulatory mechanisms in the transition from seed development to germination: interactions between the embryo and the seed environment. In: Kigel, J.; Galili, G., eds. Seed development and germination. New York: Marcel Dekker; 1995:273–332.

    Google Scholar 

  • Kragh, K. M.; Jacobsen, S.; Mikkelsen, J. D., et al. Purification and characterization of three chitinases and one β-1,3-glucanase accumulating in the medium of cell suspension cultures of barley (Hordeum vulgare L). Plant Sci. 76:65–77; 1991.

    Article  CAS  Google Scholar 

  • Label, P.; Lelu, M.-A. Changes in the levels of abscisic acid and its glucose ester conjugate during maturation of hybrid larch (Larix × leptoeuropaea) somatic embryos, in relation to germination and plantlet recovery. Physiol. Plant. 92:53–60; 1994.

    Article  Google Scholar 

  • Lamb, N.; Wahab, N.; Rose, P. A., et al. Synthesis, metabolism and biological activity of deuterated analogue of the plant hormone S-(+)-Abscisic acid. Phytochemistry 41:23–28; 1996.

    Article  CAS  Google Scholar 

  • Leal, I.; Misra, S. Developmental gene expression in conifer embryogenesis and germination. III. Analysis of crystalloid protein mRNAs and desiccation protein mRNAs in developing embryo and megagametophyte of white spruce (Picea glauca (Moench) Voss). Plant Sci. 88:25–37; 1993.

    Article  CAS  Google Scholar 

  • Leal, I.; Misra, S.; Attree, S. M., et al. Effect of abscisic acid, osmoticum and desiccation on 11S storage protein gene expression in somatic embryos of white spruce. Plant Sci. 106:121–128; 1995.

    Article  CAS  Google Scholar 

  • Lotan, T.; Ori, N.; Fluhr, R. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1:881–887; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Lulsdorf, M. M.; Tautorus, T. E.; Kikcio, S. I., et al. Growth parameters of embryogenic suspension cultures of interior spruce (Picea glaucaengelmannii complex) and black spruce (Picea mariana Mill.). Plant Sci. 82:227–234; 1992.

    Article  CAS  Google Scholar 

  • Marcotte, W. R., Jr.; Bayley, C. C.; Quatrano, R. S. Regulation of a wheat promoter by abscisic acid in rice protoplasts. Nature 335:454–457; 1988.

    Article  CAS  Google Scholar 

  • Marcotte, W. R., Jr.; Russell, S. H.; Quatrano, R. S. Abscisic acid-responsive sequences from theEm gene of wheat. Plant Cell 1:969–976; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Meeks-Wagner, D.; Dennis, E. S.; Van, K. T. T., et al. Tobacco genes expressed duringin vitro floral initiation and their expression during normal plant development. Plant Cell 1:25–35; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Milborrow, B. V.; Rubery, P. H. The specificity of the carrier-mediated uptake of ABA by root segments ofPhaseolus coccineus L. J. Exp. Bot. 36:807–822; 1985.

    Article  CAS  Google Scholar 

  • Misra, S. Conifer zygotic embryogenesis, somatic embryogenesis, and seed germination: biochemical and molecular advances. Seed Sci. Res. 4:357–384; 1994.

    CAS  Google Scholar 

  • Misra, S. Molecular analysis of zygotic and somatic conifer embryos. In: Jain, S. M., Gupta, P. K., Newton, R. J., eds. Somatic embryogenesis in woody plants. Vol 1. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:119–142.

    Google Scholar 

  • Misra, S.; Green, M. J. Development gene expression in conifer embryogenesis and germination. II. Crystalloid protein synthesis in the developing embryo and megagametophyte of white spruce (Picea glauca [Moench] Voss). Plant Sci. 78:61–71; 1991.

    Article  CAS  Google Scholar 

  • Morris, P. C.; Kumar, A.; Bowles, D. J., et al. Osmotic stress and abscisic acid regulate expression of the wheatEm genes. Eur. J. Biochem. 190:625–630; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Neale, A. D.; Wahleithner, J. A.; Lund, M., et al. Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2:673–684; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Neill, S. J.; Horgan, R.; Heald, J. K. Determination of the levels of abscisic acid-glucose ester in plants. Planta 157:371–375; 1983.

    Article  CAS  Google Scholar 

  • Newton, C. H.; Flinn, B. S.; Sutton, B. C. Vicillin-like seed storage proteins in the gymnosperm interior spruce (Picea glauca/engelmannii). Plant Mol. Biol. 20:315–322; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Parcy, F.; Valon, C.; Raynal, M., et al. Regulation of gene expression programs duringArabidopsis seed development: roles of theABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Perras, M. R.; Abrams, S. R.; Balsevich, J. J. Characterization of an abscisic acid carrier in suspension-cultured barley cells. J. Exp. Bot. 45:1565–1573; 1994.

    Article  CAS  Google Scholar 

  • Prändl, R.; Klpske, E.; Schöffl, F. Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco andArabidopsis plant. Plant Mol. Biol. 28:3–82; 1995.

    Article  Google Scholar 

  • Quatrano, R. S. Regulation of gene expression by abscisic acid during angiosperm embryo development. Oxf. Surv. Plant Mol. Cell Biol. 3:467–471; 1986.

    CAS  Google Scholar 

  • Roberts, D. R.; Flinn, B. S.; Webb, D. T., et al. Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78:355–360; 1990.

    Article  CAS  Google Scholar 

  • Roberts, D. R.; Lazaroff, W. R.; Webster, F. Interaction between maturation and high relative humidity treatments and their effects on germination of Sitka spruce somatic embryos. J. Plant Physiol. 138:1663–1674; 1991.

    Google Scholar 

  • Roberts, D. R.; Webster, F. B.; Flinn, B. S., et al. Somatic embryogenesis of spruce. In: Redenbaugh, K., ed. Synseeds, applications of synthetic seeds to crop improvement. Boca Raton, FL: CRC Press; 1993:427–450.

    Google Scholar 

  • Schmidt, E. D. L.; de Jong, A. J.; de Vries, S. C. Signal molecules involved in plant embryogenesis. Plant Mol. Biol. 26:1305–1313; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Shinshi, H.; Mohnen, D.; Meins, F., Jr. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc. Natl. Acad. Sci. USA 84:9–93; 1987.

    Article  Google Scholar 

  • Slovik, S.; Baier, M.; Hartung, W. Compartmental distribution and redistribution of abscisic acid in intact leaves. Planta 187:4–25; 1992.

    Google Scholar 

  • Sung, Z. R.; Okimoto, R. Embryonic proteins in somatic embryos of carrot. Proc. Natl. Acad. Sci. USA 78:3683–3687; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Tautorus, T. E.; Fowke, L. C.; Dunstan, D. I. Somatic embryogenesis in conifers.Can. J. Bot. 69:1873–1899; 1991.

    Article  Google Scholar 

  • Thomas, T. L. Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5:1401–1410; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, T. L.; Vivekananda J.; Bogue, M. A. ABA regulation of gene expression in embroys and mature plants. In: Davies, W. J., Jones, H. G., eds. Abscisic acid: physiology and biochemistry. Bios Scientific Publishers, Oxford, UK; 125–136; 1991.

    Google Scholar 

  • Tremblay, F. M. Somatic embryogenesis and plantlet regeneration from embryos isolated from stored seeds ofPicea glauca. Can. J. Bot. 68:236–242; 1990.

    Article  CAS  Google Scholar 

  • Uknes, S. J.; Ho, T.-H. D. Mode of action of abscisic acid in barley aleurone layers. Plant Physiol. 75:1126–1132; 1984.

    Article  PubMed  CAS  Google Scholar 

  • von Arnold, S.; Egertsdotter, U.; Mo, L. H. Importance of extracellular proteins for somatic emrbyogenesis inPicea abies. In: Terzi, M.; Cella, R.; Falavigna, A., eds. Current issues in plant molecular and cellular biology. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:389–392.

    Google Scholar 

  • von Arnold, S.; Hakman, I. Regulation of somatic embryo development inPicea abies by abscisic acid (ABA). J. Plant Physiol. 132:164–169; 1988.

    Google Scholar 

  • Walker-Simmons, M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84:61–66; 1987.

    PubMed  CAS  Google Scholar 

  • Walker-Simmons, M. K.; Anderberg, R. J.; Rose, P. A., et al. Optically pure abscisic acid analogs: tools for relating germination inhibition and gene expression in wheat embryos. Plant Physiol. 99:501–507; 1992.

    PubMed  CAS  Google Scholar 

  • Wilde, H. D.; Nelson, W. S.; Booij, H., et al. Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176:205–211; 1988.

    Article  CAS  Google Scholar 

  • Williamson, J. D.; Quatrano, R. S.; Cuming, A..Em polypeptide and its messenger RNA levels are modulated by abscisic acid during embryogenesis in wheat. Eur. J. Biochem. 152:501–507; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Windsor, M. C.; Milborrow, B. V.; McFarlane, J. J. M. The uptake of (+)-S-and (−)-R-abscisic acid by suspension culture cells of Hopbush (Dodonaea viscosa). Plant Physiol. 100:54–62; 1992.

    PubMed  CAS  Google Scholar 

  • Xin, Z.; Li, P. H. Relationship between proline and abscisic acid in the induction of chilling tolerance in maize suspension-cultured cells. Plant Physiol. 103:607–613; 1993.

    PubMed  CAS  Google Scholar 

  • Zeevaart, J. A. D.; Creelman, R. A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439–473; 1988.

    Article  CAS  Google Scholar 

  • Zimmerman, J. L.; Apuya, N.; Darwish, K., et al. Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell 1:1137–1146; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Zou, J.; Abrams, G. D.; Barton, D. L., et al. Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microsporederived embryos ofBrassica napus L. cv Reston. Plant Physiol. 108:563–571; 1995.

    PubMed  CAS  Google Scholar 

  • zur Nieden, U.; Neumann, D.; Bucka, A., et al. Tissue-specific localization of heat-stress proteins during embryo development. Planta 196:530–538; 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

National Research Council Canada publication no. 40708.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunstan, D.I., Dong, JZ., Carrier, D.J. et al. Events following ABA treatment of spruce somatic embryos. In Vitro Cell.Dev.Biol.-Plant 34, 159–168 (1998). https://doi.org/10.1007/BF02822782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822782

Key words

Navigation