Skip to main content
Log in

Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Native fungal biomass of fungiAbsidia orchidis, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nigricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference pb>Cd>Ni. The highest metal uptake was qmax = 351 mg Pb/gA. orchidis biomass. P.chrysogenum biomass could accumulate cadmium best at 56 mg Cd/g. The sorption of nickel was the weakest always at < 5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosphorylated sawdust reaching qmax = 224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The latter value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volesky, B., ed. (1990),Biosorption of Heavy Metals, CRC, Boca Raton, FL.

    Google Scholar 

  2. Holan, Z. R., Volesky, B., and Prasetyo, I. (1993),Biotehnol. Bioeng. 41, 819–825.

    Article  CAS  Google Scholar 

  3. Holan, Z. R. and Volesky, B. (1994),Biotechnol. Bioeng. 43, 1001–1009.

    Article  CAS  Google Scholar 

  4. Volesky, B. (1990), inBiosorption of Heavy Metals, Volesky, B., ed. CRC, Boca Raton, FL, pp. 139–172.

    Google Scholar 

  5. Mueler, M. D., Wolf, D. C., Beveridge, T. J., and Bailey, G. W. (1992),Soil. Bio. Biochem. 24, 129–135.

    Article  Google Scholar 

  6. Huang, J. P., Huang, C. P., and Morehart, A. L. (1991),Trace Met. Environ. 1, 329–349.

    CAS  Google Scholar 

  7. Lewis, D. and Kiff, D. J. (1988),Environ. Technol. Lett. 9, 991–998.

    Article  CAS  Google Scholar 

  8. Zhou, J. L. and Kiff, D. J. (1991),J. Chem. Technol. Biotechnol. 52, 317–330.

    Article  CAS  Google Scholar 

  9. Fourest, E. and Roux, J.-C. (1992),Appl. Microbiol. Biotechnol. 37, 399–403.

    Article  CAS  Google Scholar 

  10. Luef, E., Prey, T., and Kubicek, C. P. (1991),Appl. Microbiol. Biotechnol. 34, 688–692.

    Article  CAS  Google Scholar 

  11. Niu, H., Xu, X. S., Wang, J. H., and Volesky, B. (1993),Biotechnol. Bioeng. 42, 785–787.

    Article  CAS  Google Scholar 

  12. DeRome, L. and Gadd, G. M. (1991),J. Ind. Microbiol. 7, 97–104.

    Article  CAS  Google Scholar 

  13. Azab, M. S., Peterson, P. J., and Yong, T. W. K. (1990),Microbios 62, 23–28.

    CAS  Google Scholar 

  14. Huang, J. P., Westman, J., Quirk, K., and Huang, C. P. (1988),Water Sci. Technol. 20, 369–376.

    CAS  Google Scholar 

  15. Brauckmann, B. M. (1990), inBiosorption of Heavy Metals, Volesky, B., ed. CRC, Boca Raton, FL, pp. 51–64.

    Google Scholar 

  16. Venkobachar, C. (1990),Water. Sci. Technol. 6, 319–320.

    Google Scholar 

  17. Aval, G. M. (1991),Iran J. Chem. Eng. 10, 21–23.

    CAS  Google Scholar 

  18. Chan, W. H., Lam-Leung, S. Y., Cheng, H. W., and Yip, Y. C. (1992),Anal. Lett. 25, 305–320.

    CAS  Google Scholar 

  19. Bryant, P. S., Petersen, J. N., Lee, J. M., and Brouns, T. M. (1992),Appl. Biochem. Biotechnol. 34/35, 778–788.

    Google Scholar 

  20. Svoboda, L., Uhlir, J., and Uhlir, Z. (1992),Collect. Czech Chem. Commun. 57, 1393–1404.

    Article  CAS  Google Scholar 

  21. Shukla, S. R. and Sakhardande, V. D. (1992),J. Appl. Polymer Sci. 44, 903–910.

    Article  CAS  Google Scholar 

  22. Khangan, V. W., Banker, D. B., and Dara, S. S. (1992),Chem. Environ. Res. 1, 87–94.

    CAS  Google Scholar 

  23. Shukla, N. and Pandey, G. S. (1990),Biol. Wastes 32, 145–148.

    Article  CAS  Google Scholar 

  24. Zhang, L., Hou, W., Zhang, L. and Zhang, B. (1990),Water Treat. 5, 87–94.

    CAS  Google Scholar 

  25. Wang, Y., Han, Q., Huang, Z. and Tang, Y. (1991),Water Treat 6, 339–342.

    CAS  Google Scholar 

  26. Treen-Sears, M. E., Martin, S. M., and Volesky, B. (1984),Appl. Envir. Microbiol. 48, 137–141.

    CAS  Google Scholar 

  27. Guthrie, J. D. and Bullock, A. L. (1960),Ind. Eng. Chem. 52, 935–937.

    Article  CAS  Google Scholar 

  28. Woo, H. K., Dusenbury, J. H., and Dillon, J. H. (1956),Textile Res. J. 26, 745–760.

    CAS  Google Scholar 

  29. Porath, J. and Axen, R. (1976), inMethods in Enzymology, vol.44, Mosbach, K. ed. Academic, New York, pp. 19–45.

    Google Scholar 

  30. Nevell, T. P. (1963), inMethods in Carbohydrate Chemistry, vol. 3, Whistler, R. L., Green, J. W., and BeMiller, J. N., eds. Academic, New York, pp. 164–185.

    Google Scholar 

  31. Guthrie, J. D. (1952),Ind. Eng. Chem. 44, 2187–2189.

    Article  CAS  Google Scholar 

  32. Skryabin, G. K. and Koshcheenko, K. A. (1987), inMethods in Enzymology,135, Mosbach, K., ed. Academic, New York, pp. 198–216.

    Google Scholar 

  33. Gai, Z., Gao, Z., Peng, B., and Yu, X. (1981),Yaoxue Xuebao 16, 342–348;Chem. Abstr. (1982),97, 90,333.

    CAS  Google Scholar 

  34. Tsuchihashi, H., Yadomae, T., and Miyazaki, T. (1983),Carbohydr. Res. 111, 330–335.

    Article  CAS  Google Scholar 

  35. Campos-Takaki, G. M., Beakes, G. W., and Dietrich, S. M. C. (1983),Trans. Br. Mycol. Soc. 80, 536–541.

    Article  CAS  Google Scholar 

  36. Yamada, H., Oshima, Y., and Miyazaki, T. (1982),Carbohydr. Res. 110, 113–126.

    Article  CAS  Google Scholar 

  37. Edwards, A. G. and Ho, C. S. (1988),Biotechnol. Bioeng. 32, 1–7.

    Article  CAS  Google Scholar 

  38. Grisaro, V., Chipman, D. M., Sharon, N., and Barkai-Golan, R. (1968),J. Gen. Microbiol. 51, 145–150.

    CAS  Google Scholar 

  39. Preston, J. F., Lapis, E., and Gander, J. E. (1969),Arch. Biochem. Biophys. 134, 324–334.

    Article  CAS  Google Scholar 

  40. Head, A. J., Kember, N. F., Miller, R. P., and Wells, R. A. (1959),J. Appl. Chem. 9, 599–608.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holan, Z.R., Volesky, B. Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53, 133–146 (1995). https://doi.org/10.1007/BF02788603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788603

Index Entries

Navigation