Skip to main content
Log in

Transport of ions and solvent in confined media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new theoretical approach is used to model the transport properties of a cation-exchange membrane. By using the Navier-Stokes equation related to the Poisson-Boltzmann relation, it is thus possible to determine the solvent velocity in a membrane pore, and the influence of electroosmosis on the transport properties of the polymer. The variation of the transport coefficients with salt concentration in the membrane pore was modeled as for simple electrolytes: taking electrophoretic interactions and relaxation effect into account, we used MSA analytical expressions. We have investigated membrane conductivity and electrophoretic sodium mobility measurements when the membrane was equilibrated with NaCl solution. Good agreement was found between the experimental results and our theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Eisenberg and H. L. Yeager,Perfluorinated Ionomer Membranes, Am. Chem. Soc. Symposium Series, No. 180, Chapt. 14–19 (1982).

  2. F. G. Will,J. Electrochem. Soc. 126:36 (1979).

    Article  Google Scholar 

  3. F. G. Will and H. S. Spacil,J. Power Sources 5:173 (1980).

    Article  ADS  Google Scholar 

  4. E. Gileadi, S. Srinivasan, F. J. Salzano, C. Braun, A. Beaufrere, S. Gottesfeld, L. J. Nuttal, and A. B. LaConti,J. Power Sources 2:191 (1977).

    Article  ADS  Google Scholar 

  5. H. L. Yeager, B. Kipling, and R. L. Dotson,J. Electrochem. Soc. 127:303 (1980).

    Article  Google Scholar 

  6. R. S. Yeo, J. Mc Breen, G. Kissel, F. Kulesa, and S. Srinivasan,J. Appl. Electrochem. 10:741 (1980).

    Article  Google Scholar 

  7. K. Hass and P. Schmittinger,Electrochim. Acta 21:1115 (1976).

    Article  Google Scholar 

  8. J. Jörne,J. Electrochem. Soc. 129:722 (1982).

    Article  Google Scholar 

  9. M. W. Verbrugge and P. N. Pintauro, in B. F. Conway, R. E. White, and J. O’M. Bockris (Ed.),Modem Aspects of Electrochemistry, Vol. 19, Plenum Press, New York (1990).

    Google Scholar 

  10. S. W. Capeci, P. N. Pintauro, and D. N. Bennion,J. Electrochem. Soc. 136:10 (1989).

    Article  Google Scholar 

  11. M. W. Verbrugge and R. F. Hill,J. Phys. Chem. 92:6778 (1988).

    Article  Google Scholar 

  12. M. W. Verbrugge and R. F. Hill,J. Electrochem. Soc. 137(3):886 (1990).

    Article  Google Scholar 

  13. A. Narebska and S. Koter,Electrochim. Acta 32(3):449 (1987).

    Article  Google Scholar 

  14. N. Smoluchowski,Krak. Anz. 182 (1903).

  15. S. S. Dukhin and B. V. Derjaguin,Surface and Colloid Science, Vol. 7, Ed. Matijevic, John Wiley & Sons, New York(1974).

    Google Scholar 

  16. W. H. Koh,J. Colloid Interface Sci. 71:613 (1979).

    Article  Google Scholar 

  17. L. Dresner and K. A. Kraus,J. Phys. Chem. 67:990 (1963).

    Article  Google Scholar 

  18. L. Dresner,J. Phys. Chem. 67:1635 (1963).

    Article  Google Scholar 

  19. Y. Kobatake and H. Fujita,J. Chem. Phys. 40:2212 (1964).

    Article  ADS  Google Scholar 

  20. C. L. Rice and R. Whitehead,J. Phys. Chem. 69:4017 (1965).

    Article  Google Scholar 

  21. F. B. Hildebrand,Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, New Jersey, p. 147 (1976).

    MATH  Google Scholar 

  22. F. A. Morrisson, Jr. and J. F. Osterle,J. Chem. Phys. 43:2111 (1965).

    Article  ADS  Google Scholar 

  23. R. J. Gross and J. F. Osterle,J. Chem Phys. 49:228 (1968).

    Article  ADS  Google Scholar 

  24. J. C. Fair and J. F. Osterle,J. Chem. Phys. 54:3307 (1971).

    Article  ADS  Google Scholar 

  25. R. L. Fleischer and P. B. Price,Science 140:1221 (1963).

    Article  ADS  Google Scholar 

  26. G. B. Westermann-Clark and J. L. Anderson,J. Electrochem. Soc. 130:839 (1983).

    Article  Google Scholar 

  27. W. Nernst,Z. Phys. Chem. 2:613 (1888).

    Google Scholar 

  28. M. Planck,Ann. Phys. Chem. 39:161 (1890).

    Article  ADS  Google Scholar 

  29. L. Onsager,Phys. Rev. 37:405 (1931).

    Article  MATH  ADS  Google Scholar 

  30. L. Onsager,Phys. Rev. 38:2265 (1931).

    Article  MATH  ADS  Google Scholar 

  31. L. Onsager,Ann. N.Y. Acad. Sci. 46:241 (1945).

    Article  Google Scholar 

  32. H. L. Yeager and A. Steck,Anal. Chem. 51:862 (1979).

    Article  Google Scholar 

  33. A. Steck and H. L. Yeager,Anal. Chem. 51: 1215 (1979).

    Google Scholar 

  34. A. Eisenberg and M. King, in R. S. Stein (Ed.),Polymer Physics, Academic Press, New York, Chapt. 4. (1977).

    Google Scholar 

  35. T. D. Gierke,Proceedings of the Symposium on Perfluorocarbon Ion Exchange Membranes, The Electrochemical Soc, Meeting, Georgia (1977).

  36. G. Scibona, C. Fabiani, and B. Scuppa,J. Membr. Sci. 16:37 (1983).

    Article  Google Scholar 

  37. G. Pourcelly, A. Lindheimer, C. Gavach, and H. D. Hurwitz,J. Electroanal. Chem. 305:97 (1991).

    Article  Google Scholar 

  38. G. Gavach, P. Pamboutzoglou, M. Nedyalkov, and G. Pourcelly,J. Membr. Sci. 45:37 (1989).

    Article  Google Scholar 

  39. A. Narebska, S. Koter, and W. Kujawski,J. Membr. Sci. 25:153 (1985).

    Article  Google Scholar 

  40. H. L. Yeager, B. O’Dell, and Z. Twardowski,J. Electrochem. Soc. 129(1): 85 (1982).

    Article  Google Scholar 

  41. A. A. Gronowski and H. L. Yeager,J. Electrochem. Soc. 138(9):2690 (1991).

    Article  Google Scholar 

  42. A. Lindheimer, J. Molenat, and C. Gavach,J. Electroanal. Chem. 216:71 (1987).

    Article  Google Scholar 

  43. E. J. Taylor, N. R. K. Vilambi, R. Waterhouse, and A. Gelb,J. Appl. Electrochem. 21:402 (1991).

    Article  Google Scholar 

  44. T. D. Gierke,The Electrochemical Society Extended Abstracts, Vol. 77-2, Atlanta, GA, Abstract 438, p. 1139(1977).

  45. G. Gebel, P. Aldebert, and M. Pineri,Polymer 34(2):333 (1993).

    Article  Google Scholar 

  46. L. Belloni, M. Drifford, and P. Turq,Chem. Phys. 83:147 (1984).

    Article  Google Scholar 

  47. W. G. Mc Millan and J. E. Mayer,J. Chem. Phys. 13:276 (1945).

    Article  ADS  Google Scholar 

  48. E. Waisman and J. L. Lebowitz,J. Chem. Phys. 52:4307 (1970).

    Article  ADS  Google Scholar 

  49. L. Blum,Mol. Phys. 30(5):1529 (1975). L. Blum and J. S. Høye,J. Phys. Chem. 81:1311 (1977). K. Hiroike,Mol. Phys. 33:1195 (1977).

    Article  MathSciNet  Google Scholar 

  50. M. Périé and J. Périé,J. Electroanal. Chem. 393:17 (1995).

    Article  Google Scholar 

  51. S. Rossy-Delluc, T. Cartailler, P. Turq, O. Bernard, N. Morel-Desrosiers, J. P. Morel, and W. Kunz,J. Phys. Chem. 97:5136 (1993).

    Article  Google Scholar 

  52. P. Turq, L. Orcil, J. P. Simonin, and J. Barthel,Pure Appl. Chem. 59:1083 (1987).

    Article  Google Scholar 

  53. L. Orcil, P. Turq, C. Musikas, Y. Pruliére, and M. Chemla,J. Phys. Chem. 88:5265 (1984).

    Article  Google Scholar 

  54. O. Bernard, P. Turq, et L. Blum,J. Phys. Chem. 95 (1991) 9508.

    Article  Google Scholar 

  55. O. Bernard, W. Kunz, P. Turq, et L. Blum,J. Phys. Chem. 96:3833 (1992). P. Turq, L. Blum, O. Bernard and W. Kunz,J. Phys. Chem. 99:822 (1995). A. Chhih, P. Turq, O. Bernard, J. M. G. Barthel and L. Blum,Ber. Bunsenges. Phys. Chem. 12:1516 (1994).

    Article  Google Scholar 

  56. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd Ed., Butterworth, London (1959).

    Google Scholar 

  57. H. Helmholtz,Wied. Ann. 7:337 (1879).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmani, A., Bernard, O. & Turq, P. Transport of ions and solvent in confined media. J Stat Phys 89, 379–402 (1997). https://doi.org/10.1007/BF02770771

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02770771

Key Words

Navigation