Skip to main content
Log in

Second-order Percus-Yevick theory for a confined hard-sphere fluid

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A fluid of hard spheres confined between two hard walls and in equilibrium with a bulk hard-sphere fluid is studied using a second-order Percus-Yevick approximation. We refer to this approximation as second-order because the correlations that are calculated depend upon the position of two hard spheres in the confined fluid. However, because the correlation functions depend upon the positions of four particles (two hard spheres and two walls treated as giant hard spheres), this is the most demanding application of the second-order theory that has been attempted. When the two walls are far apart, this calculation reduces to our earlier second-order approximation calculations of the properties of hard spheres near a single hard wall. Our earlier calculations showed this approach to be accurate for the single-wall case. In this work we calculate the density profiles and the pressure of the hard-sphere fluid on the walls. We find, by comparison with grand canonical Monte Carlo results, that the second-order approximation is very accurate, even when the two walls have a small separation. We compare with a singlet approximation (in the sense that correlation functions that depend on the position of only one hard sphere are considered). The singlet approach is fairly satisfactory when the two walls are far apart but becomes unsatisfactory when the two walls have a small separation. We also examine a simple theory of the pressure of the confined hard spheres, based on the usual Percus-Yevick theory of hard-sphere mixtures. Given the simplicity of the latter approach the results of this simple (and explicit) theory are surprisingly good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Israelachvili,Intermolecular and Surfaces Forces, Academic Press, London (1992).

    Google Scholar 

  2. D. Henderson and M. Lozada-Cassou,J. Colloid Interface Sci. 114:180 (1986).

    Article  Google Scholar 

  3. D. Henderson,J Colloid Interface Sci. 121:486 (1988).

    Article  Google Scholar 

  4. J. Lebowitz,Phys. Rev. 133:A895 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  5. B. V. Derjaguin,Kolloid Z. 69:155 (1934).

    Article  Google Scholar 

  6. M. Wertheim, L. Blum, and D. Bratko, inMicellar Solutions and Microemulsions (S.-H. Chen and R. Rajagopalan, Eds.), Springer-Verlag, New York, NY (1990) Chapt. 6.

    Google Scholar 

  7. R. Evans and U. Marini Bettolo Marconi,J. Chem. Phys. 86:7138 (1987).

    Article  ADS  Google Scholar 

  8. M. Lozada-Cassou, inFundamentals of Inhomogeneous Fluids (D. Henderson, Ed.), Dekker, New York, NY (1992) Chapt. 8.

    Google Scholar 

  9. Y. Zhou, and G. Stell,Mol. Phys. 66:767 (1989).

    Article  ADS  Google Scholar 

  10. B. Götzelmann and S. Dietrich, Report WUB96-35, Fachbereich Physik, Bergische Universität Gesamthochschule Wuppertal (1996).

  11. D. Henderson, F. F. Abraham, and J. A. Barker,Mol. Phys. 31:1291 (1976).

    Article  Google Scholar 

  12. J. K. Percus,J. Stat. Phys. 15:505 (1976).

    Article  MathSciNet  Google Scholar 

  13. S. Sokołowski,J. Chem. Phys. 73:3507 (1980).

    Article  ADS  Google Scholar 

  14. M. Plischke and D. Henderson,Proc. Roy. Soc. (London) A 404:323 (1986).

    ADS  Google Scholar 

  15. I. K. Snook and D. Henderson,J. Chem. Phys. 68:2134 (1978).

    Article  ADS  Google Scholar 

  16. J. R. Henderson and F. van Swol,Mol. Phys. 51:991 (1984).

    Article  Google Scholar 

  17. J. Alejandre, M. Lozada-Cassou, and. L. Dégrevé,Mol. Phys. 88:1317 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, D., Sokolowski, S. & Wasan, D. Second-order Percus-Yevick theory for a confined hard-sphere fluid. J Stat Phys 89, 233–247 (1997). https://doi.org/10.1007/BF02770763

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02770763

Key Words

Navigation