Skip to main content
Log in

Part I. The 2D classical Coulomb gas near the zero-density Kosterlitz-Thouless critical point: Correlations and critical line

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The 2D classical Coulomb gas undergoes the famous Kosterlitz-Thouless (KT) transition between a high-temperature conducting phase and a low-temperature insulating phase. We present various studies of the correlations in the insulating phase near the zero-density critical point. First, we briefly recall the phenomenological approach of Kosterlitz and Thouless. This theory predicts that the decay of the charge correlation is entirely controlled by the bare Coulomb potential between opposite charges only renormalized by the dielectric constante. Then, we present an analysis of the low-fugacity expansions of the correlations. The particle correlations are found to decay as 1/r4. The large-distance decay of the charge correlation is shown to be tightly related to the behavior of l/s in the regime of interest. Systematic resummations allow one to recover the algebraic decay predicted by the heuristic KT model. This settles on a rigorous basis various assumptions of this model. In particular, the nested pair mechanism naturally arises in the resummation scheme. Finally, we describe the phase diagram of the system according to the most recent calculations which include finite-density effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Hauge and P. C. Hemmer,Phys. Norv. 5, 209 (1971).

    Google Scholar 

  2. A. M. Salzberg and S. Prager,J. Chem. Phys. 38, 2587 (1963).

    Article  ADS  Google Scholar 

  3. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  4. J. M. Kosterlitz,J. Phys. C 7, 1046 (1974).

    Article  ADS  Google Scholar 

  5. N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  6. A. Alastuey, F. Cornu, and B. Jancovici,Phys. Rev. A 40, 931 (1989).

    Article  Google Scholar 

  7. J. M. Caillol and D. Levesque,Phys. Rev. B 33, 499 (1986).

    Article  ADS  Google Scholar 

  8. G. Orkoulas and A. Z. Panagiotopoulos,J. Chem. Phys. 104, 7205 (1996).

    Article  ADS  Google Scholar 

  9. Y. Levin, X.-J. Li, and M. E. Fisher,Phys. Rev. Lett. 73, 2716 (1994).

    Article  ADS  Google Scholar 

  10. J. Frölich and T. Spencer,Commun. Math. Phys. 81, 527 (1981); D. H. U. Marchetti, A. Klein and J. F. Perez,J. Stat. Phys. 60, 137 (1990).

    Article  ADS  Google Scholar 

  11. C. Deutsch and M. Lavaud,Phys. Rev. Lett. 31, 921 (1973).

    Article  ADS  Google Scholar 

  12. W. Yang,J. Stat. Phys. 49, 1 (1987).

    Article  MATH  Google Scholar 

  13. M. Gaudin,J. Phys. (Paris)46, 1027 (1985).

    MathSciNet  Google Scholar 

  14. F. Cornu and B. Jancovici,J. Stat. Phys. 49, 33 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  15. Ph. A. Martin and Ch. Gruber,J. Stat. Phys. 31, 691 (1983).

    Article  MathSciNet  Google Scholar 

  16. A. Alastuey and F. Cornu,J. Stat. Phys. 66, 165 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Minnhagen,Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  18. D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein,J. Phys. A 13, 585 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. S. Høye and K. Olaussen,Physica A 107, 241 (1981).

    Article  ADS  Google Scholar 

  20. E. R. Speer,J. Stat. Phys. 42, 895 (1986).

    Article  MathSciNet  Google Scholar 

  21. T. R. Hurd, in “ConstructivePhysics” ed. by V. Rivasseau, Lecture Notes in Physics (Springer-Verlag, 1995).

  22. A. Alastuey and F. Cornu, to be published inJ. Stat. Phys.

  23. M. E. Fisher, private communication based on work with X.-J. Li and Y. Levin, extending the analysis of ref. 9.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alastuey, A., Cornu, F. Part I. The 2D classical Coulomb gas near the zero-density Kosterlitz-Thouless critical point: Correlations and critical line. J Stat Phys 89, 6–19 (1997). https://doi.org/10.1007/BF02770751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02770751

Key Words

Navigation