Skip to main content
Log in

Weakly gibbsian measures for lattice spin systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a weaker notion of Gibbs measures by requiring that only an almost everywhere absolutely summable potential is given. This has recently appeared in the context “Gibbsian versus non-Gibbsian measures”. We give a first exploration of the main features of this weaker notion. We concentrate on the questions of where do weakly Gibbsian measures appear and what remains of their thermodynamic description

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bricmont, A. Kupiainen, and R. Lefevere, Renormalization group pathologies are not so bad, after all, preprint, UC Louvain, 1997.

  2. A. D. Bruce and J. M. Pryce, Statistical mechanics of image restoration,J. Phys. A 28:511–532 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. R. M. Burton and J. Steif, Quite weak Bernoulli with exponential rate and percolation for random fields,Stock. Process. Appl. 58:35 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. T. Chayes, L. Chayes, and R. H. Schonmann, Exponential decay of connectivities in the two dimensional Ising model,J. Stat. Phys. 49:433–445 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. R. L. Dobrushin, Lecture given at the workshop “Probability and Physics,” in Renkum (Holland), 28 August–1 September, 1995.

  6. A. C. D. van Enter, Ill-defined block-spin transformations at arbitrarily high temperatures,J. Stat. Phys. 83:761–765 (1996).

    Article  MATH  ADS  Google Scholar 

  7. A. C. D. van Enter, On the possible failure of the Gibbs property for measures on lattice spin systems,Markov Proc. Rel. Fields 2:209–225 (1996).

    MATH  Google Scholar 

  8. A. C. D. van Enter and J. Lorinczi, Robustness of the non-Gibbsian property: some examples,J. Phys. A 29 :2465–2473 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. A. C. D. van Enter, R. Fernandez, and R. Kotecký, Pathological behaviour of renormalization-group maps at high fields and above the transition temperature,J. Stat. Phys. 79:969–992(1995).

    Article  MATH  ADS  Google Scholar 

  10. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization group transformations: Scope and limitations of Gibbsian theory,J. Stat. Phys. 72:879–1167 (1993).

    Article  MATH  ADS  Google Scholar 

  11. R. Fernandez and Ch.-E. Pfister, Non-quasilocality of projections of Gibbs measures, to appear inAnn. Prob., 1997.

  12. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,IEEE Trans. Pattern Anal. Machine Intell. 6:721–741 (1984).

    Article  MATH  Google Scholar 

  13. H.-O. Georgii,Gibbs Measures and Phase Transitions, Walter de Gruyter, de Gruyter Series in Mathematics vol. 9., Berlin, New York, 1988.

  14. G. Giacomin, J. L. Lebowitz, and C. Maes, Agreement percolation and phase coexistence in some Gibbs systems,J. Stat. Phys. 80:1379–1403 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. R. B. Griffiths and P. A. Pearce, Position-space renormalization transformations: some proofs and some problems,Phys. Rev. Lett. 41 :917–920 (1978).

    Article  ADS  Google Scholar 

  16. R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations,J. Stat. Phys. 20:499–545 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Grimmett, The stochastic random-cluster process, and the uniqueness of randomcluster measures,Ann. Prob. 23:1461–1510 (1995).

    MATH  MathSciNet  Google Scholar 

  18. K. Haller and T. Kennedy, Absence of renormalization group pathologies near the critical temperature-Two examples,J. Stat. Phys. 85:607–638 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. O. Häggström, Almost sure quasilocality fails for the random-cluster model on a tree,J. Stat. Phys. 84:1351–1361 (1996).

    Article  MATH  Google Scholar 

  20. R. B. Israel, Banach algebras and Kadanoff transformations, in:Random Fields, Proceedings, Esztergom 1979, J. Fritz, J. L. Lebowitz and D. Szász, eds., North Holland, Amsterdam, vol. 2., pp. 593–608, 1981.

    Google Scholar 

  21. H. Künsch, Almost sure entropy and the variational principle for random fields with unbounded state space,Z. Wahrscheinlichkeitstheorie Verw. Geb. 58:69–85 (1981).

    Article  MATH  Google Scholar 

  22. J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Star. Phys. 59:117–170 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. L. Lebowitz and E. Presutti, Statistical mechanics for unbounded spin systems,Commun. Math. Phys. 50:195–218 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Lörinczi,On Limits of the Gibbsian Formalism in Thermodynamics, PhD Thesis, University of Groningen, 1995.

  25. J. Lörinczi and M. Winnink, Some remarks on almost Gibbs states, in:Proc. NATO Adv. Studies Inst. Workshop on Cellular Automata and Cooperative Systems (Les Houches 1992), N. Boccara et al, eds., Kluwer, Dordrecht, 1993, 423–432.

    Google Scholar 

  26. J. Lőrinczi and K. Vande Velde, A note on the projection of Gibbs measures,J. Stat. Phys. 77:881–887 (1994).

    Article  ADS  Google Scholar 

  27. C. Maes and K. Vande Velde, Defining relative energies for the projected Ising measure,Helv. Phys. Acta 65:1055–1068 (1992).

    MathSciNet  Google Scholar 

  28. C. Maes and K. Vande Velde, The (non-) Gibbsian nature of states invariant under stochastic transformations,Physica A 206:587–603 (1994).

    ADS  Google Scholar 

  29. C. Maes and K. Vande Velde, The fuzzy Potts model,J. Phys. A 28:4261–4271 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. C. Maes and K. Vande Velde, Relative energies for non-Gibbsian states, to appear inCommun. Math. Phys., 1997.

  31. F. Martinelli and E. Scoppola, A simple stochastic cluster dynamics: Rigorous results,J. Phys. A 24:3135–3157 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  32. Ch.-E. Pfister and K. Vande Velde, Almost sure quasilocality in the random cluster model,J. Stat. Phys. 79:765–774 (1995).

    Article  MATH  ADS  Google Scholar 

  33. C. Preston,Random Fields, Springer LNM534, 1976.

  34. D. Ruelle, Superstable interactions,Commun. Math. Phys. 18:127 (1970).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. D. Ruelle, Probability estimates for continuous spin systems,Commun. Math. Phys. 50:189–194 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  36. R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian,Commun. Math. Phys. 124:1–7 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. E. R. Speer, The two species totally asymmetric simple exclusion process, in :Proceedings of the NATO Advanced Studies Institute Workshop “On Three Levels”, Leuven 1993, M. Fannes et al., eds., Plenum Press, 91–103, 1994.

  38. W. G. Sullivan, Potentials for almost Markovian random fields,Commun. Math. Phys. 33:61–74(1973).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. M. Zahradnik, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jôzsef Lörinczi1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lörinczi1, J., Maes, C. Weakly gibbsian measures for lattice spin systems. J Stat Phys 89, 561–579 (1997). https://doi.org/10.1007/BF02765536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765536

Key Words

Navigation