Skip to main content
Log in

Limit theorems for multivariate discrete distributions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

According to the usual law of small numbers a multivariate Poisson distribution is derived by defining an appropriate model for multivariate Binomial distributions and examining their behaviour for large numbers of trials and small probabilities of marginal and simultaneous successes. The weak limit law is a generalization of Poisson's distribution to larger finite dimensions with arbitrary dependence structure. Compounding this multivariate Poisson distribution by a Gamma distribution results in a multivariate Pascal distribution which is again asymptotically multivariate Poisson. These Pascal distributions contain a class of multivariate geometric distributions. Finally the bivariate Binomial distribution is shown to be the limit law of appropriate bivariate hypergeometric distributions. Proving the limit theorems mentioned here as well as understanding the corresponding limit distributions becomes feasible by using probability generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken AC (1936) A further note on multivariate selection. Proceedings of the Edinburgh Mathematical Society (Series 2) 5: 37–40

    MATH  Google Scholar 

  2. Aki S (1985) Discrete distributions of order k on a binary sequence. Annals of the Institute of Statistical Mathematics 37: 205–224

    Article  MATH  MathSciNet  Google Scholar 

  3. Beutler FJ (1983) A note on multivariate Poisson flows on stochastic processes. Advances in Applied Probability 15: 219–220.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bickel RJ, Freedman DJ (1981) Some asymptotic theory for the bootstrap. Annals of Statistics 9: 1196–1217.

    MATH  MathSciNet  Google Scholar 

  5. Block HW Savitz TH, Shaked M (1982) Some concepts of negative dependence. Annals of Probability 10: 765–772

    MATH  MathSciNet  Google Scholar 

  6. Cacoullos T, Papageorgiou H (1983) Characterizations of discrete distributions by a conditional distribution and a regression function. Annals of the Institute of Statistical Mathematics 35: 95–104.

    Article  MATH  MathSciNet  Google Scholar 

  7. Campbell JT (1934) The Poisson correlation function. Proceedings of the Edinburgh Mathematical Society (Series 2) 4: 18–26

    MATH  Google Scholar 

  8. Dawass M, Teicher H (1956) On infinitely divisible random vectors. Annals of Mathematical Statistics 27: 461–470

    Google Scholar 

  9. Ehm W (1991) Binomial approximation to the Poisson binomial distribution. Stat. Probability Letters 11: 7–16

    Article  MATH  MathSciNet  Google Scholar 

  10. Famoye F, Consul PC (1995) Bivariate generalized Poisson distribution with some applications. Metrika 42: 127–139

    Article  MATH  MathSciNet  Google Scholar 

  11. Gordon FS, Gordon SP (1975) Transcendental functions of a vector variable and a characterization of a multivariate Poisson distribution. Statistical Distributions in Scientific Work 3: 163–172.

    Google Scholar 

  12. Gourieroux C, Monfort A (1979) On the characterization of a joint probability distribution by conditional distributions. Journal of Econometrics 10: 115–118

    Article  MathSciNet  Google Scholar 

  13. Griffiths RC, Milne RK (1978) A class of bivariate Poisson processes. Journal of Multivariate Analysis 8: 380–395

    Article  MATH  MathSciNet  Google Scholar 

  14. Griffiths RC, Milne RK, Wood R (1979) Aspects of correlation in bivariate Poisson distributions and processes. Australian Journal of Statistics 21: 238–255

    MATH  MathSciNet  Google Scholar 

  15. Hamadan MA (1973) A stochastic derivation of the bivariate Poisson distribution. South African Statistical Journal 7: 69–71

    MathSciNet  Google Scholar 

  16. Hamadan MA, Al-Bayyati HA (1971) Canonical expansion of the compound correlated bivariate Poisson distribution. Journal of the American Statistical Association 66: 390–393

    Article  Google Scholar 

  17. Hawkes AG (1972) A bivariate exponential distribution with applications to reliability. Journal of the Royal Statistical Society, SeriesB, 34: 129–121

    MATH  Google Scholar 

  18. Holgate P (1964) Estimation for the bivariate Poisson distribution. Biometrika 51: 241–245

    MATH  MathSciNet  Google Scholar 

  19. Jamardan KG (1973) Chance mechanisms for multivariate hypergeometric models. Sankhya A 35: 465–478

    Google Scholar 

  20. Jamardan KG (1975) Certain inference problems for multivariate hypergeometric distributions. Communications in Statistics 4: 375–388

    Article  Google Scholar 

  21. Jamardan KG (1976) Certain estimation problems for multivariate hypergeometric models. Annals of the Institute of Statistical Mathematics 28: 429–444

    Article  MathSciNet  Google Scholar 

  22. Jensen DR (1971) A note on Positive dependence and the structure of bivariate distributions. SIAM Journal of Applied Mathematics 20: 749–752

    Article  MATH  Google Scholar 

  23. Jogedo K (1968) Characterizations of independence in certain families of bivariate and multivariate distributions. Annals of Mathematical Statistics 39: 433–441

    MathSciNet  Google Scholar 

  24. Jogedo K (1975) Dependence concepts and probability inequalities. Statistical Distributions in Scientific Work 1: 271–279

    Google Scholar 

  25. Jogedo K, Patil GP (1975) Probability inequalities for certain multivariate discrete distributions. Sankhya B, 37: 158–164.

    Google Scholar 

  26. Johnson N, Kotz S (1969) Distributions in statistics I: Discrete distributions. Houghton Mifflin Boston

    MATH  Google Scholar 

  27. Johnson N, Kotz S (1972) Distributions in statistics IV: Continuous multivariate distributions. John Wiley, New York.

    MATH  Google Scholar 

  28. Khatri CG (1971) On multivariate contagious distributions. Sankhya B, 33: 197–216

    MathSciNet  Google Scholar 

  29. Kocherlakota S, Kocherlakota K (1993) Bivariate discrete distributions. Marcel Dekker, New York

    Google Scholar 

  30. Krishnamoorthy AS (1951) Multivariate binomial and Poisson distributions. Sankhya 11: 117–124

    MATH  MathSciNet  Google Scholar 

  31. Krummenauer F (1996) Grenzwertsätze für multivariate diskrete Verteilungen. Doctoral Thesis in Statistics, University of Dortmund, Germany

    Google Scholar 

  32. Lukacs E (1979) Some multivariate statistical characterization theorems. Journal of Multivariate Analysis 9: 278–287

    Article  MATH  MathSciNet  Google Scholar 

  33. Lukacs E, Beer S (1977) Characterization of the multivariate Poisson distribution. Journal of Multivariate Analysis 7: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  34. Marshall AW, Olkin I (1985) A family of bivariate distributions generated by the bivariate Bernoulli distribution. Journal of the American Statistical Association 80: 332–338.

    Article  MATH  MathSciNet  Google Scholar 

  35. Mitchell CR, Paulson AS (1981) A new bivariate negative binomial distribution. Naval Research Logistics Quaterly 28: 359–374

    Article  MATH  MathSciNet  Google Scholar 

  36. Nelson JF (1985) Multivariate Gamma-Poisson models. Journal of the American Statistical Association 8: 828–834

    Article  Google Scholar 

  37. Nevill AM, Kemp CD (1975) On characterizing the hypergeometric and multivariate hypergeometric distributions. Statistical Distributions in Scientific Work 3: 353–358

    Google Scholar 

  38. Panaretos J (1980) A characterization of a general class of multivariate discrete distributions. In: Gyeres (ed.) Analytic function methods in probability theory Colloquia Mathematica Societatis Janos Bolyai, 21, North Holland, Amsterdam, pp. 243–252

    Google Scholar 

  39. Panaretos J (1983) An elementary characterization of the multinomial and the multivariate hypergeometric distribution. In: Kalashnikov VV, Zolotarev, VM (eds) Statistical problems for stochastic models. Springer-Verlag, New York, pp. 156–164.

    Chapter  Google Scholar 

  40. Patil GP (1964) On certain compound Poisson and compound binomial distributions. Sankhya A 26: 293–294

    MATH  MathSciNet  Google Scholar 

  41. Sibuya M (1983) Generalized hypergeometric distributions. Encyclopedia of Statistical Sciences 3: 330–334

    Google Scholar 

  42. Steyn HS (1951) On discrete multivariate probability functions of hypergeometric type. Koninklijke Nederlandse Akademie Wetenschappen Proceedings (Series A) 54: 23–30.

    MathSciNet  Google Scholar 

  43. Steyn HS (1955) On discrete multivariate probability functions of hypergeometric type. Koninklijke Nederlandse Akademie Wetenschappen Proceedings (Series A) 58: 588–595

    MathSciNet  MATH  Google Scholar 

  44. Takeuchi K, Takemura A (1987) On sums of 0–1 random variables II: Multivariate case. Annals of the Institute of Statistical Mathematics 39, Part A: 307–324

    Article  MATH  MathSciNet  Google Scholar 

  45. Talwalker S (1970) A characterization of the double Poisson distribution. Sankhya A, 32: 265–270

    MATH  MathSciNet  Google Scholar 

  46. Teicher H (1954) On the multivariate Poisson distribution. Scandinavisk Aktuarietidskrift 37: 1–9

    MathSciNet  Google Scholar 

  47. Wang YH (1989) A multivariate extension of Poisson's theorem. Canadian Journal of Statistics 17: 241–245

    Article  MATH  Google Scholar 

  48. Wicksell SD (1923) Contributions to the analytical theory of sampling. Arkiv for Matematik, Astronomi Och Fysik 17: 1–46

    Google Scholar 

  49. Zolotarev VM (1966) A multidimensional analogue of the Berry/Esséen inequality for sets with bounded diameter. SIAM Theory of Probability and Its Applications 11: 447–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Krummenauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krummenauer, F. Limit theorems for multivariate discrete distributions. Metrika 47, 47–69 (1998). https://doi.org/10.1007/BF02742864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02742864

Key words

Navigation