Skip to main content
Log in

Detrimental effects of chronic hypothalamic—pituitary—adrenal axis activation

From obesity to memory deficits

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that the detrimental effects of glucocorticoid (GC) hypersecretion occur by activation of the hypothalamic-pituitary-adrenal (HPA) axis in several human pathologies, including obesity, Alzheimer's disease, AIDS dementia, and depression. The different patterns of response by the HPA axis during chronic activation are an important consideration in selecting an animal model to assess HPA axis function in a particular disorder. This article will discuss how chronic HPA axis activation and GC hypersecretion affect hippocampal function and contribute to the development of obesity. In the brain, the hippocampus has the highest concentration of GC receptors. Chronic stress or corticosterone treatment induces neuropathological alterations, such as dendritic atrophy in hippocampal neurons, which are paralleled by cognitive deficits. Excitatory amino acid (EAA) neurotransmission has been implicated in chronic HPA axis activation. EAAs play a major role in neuroendocrine regulation. Hippocampal dendritic atrophy may involve alterations in EAA transporter function, and decreased EAA transporter function may also contribute to chronic HPA axis activation. Understanding the molecular mechanisms of HPA axis activation will likely advance the development of therapeutic interventions for conditions in which GC levels are chronically elevated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolphs R., Tranel D., Damasio H. and Damasio A. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala.Nature 372, 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Aguilera G. (1994) Regulation of pituitary ACTH secretion during chronic stress.Front. Neuroendocrinol. 15, 321–350.

    Article  PubMed  CAS  Google Scholar 

  • Aguilera G., Lightman S. L. and Kiss A. (1993) Regulation of the hypothalamic-pituitary-adrenal axis during water deprivation.Endocrinology 132, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Akana S. F., Chu A. C. and Dallman M. F. (1997) Corticosterone in the amygdala determines abdominal obesity in a state-dependent manner.Soc. Neurosci. Ann. Meeting 23, 1792 (abstr.).

    Google Scholar 

  • Almawi W. Y., Beylum H. N., Rahme A. A. and Rieder M. J. (1996) Regulation of cytokine and cytokine receptor expression by glucocorticoids.J. Leukocyte Biol. 60, 563–572.

    PubMed  CAS  Google Scholar 

  • Antoni F. A. (1986) Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor.Endoc. Rev. 7, 351–378.

    CAS  Google Scholar 

  • Appel N. M., Owens M. J., Culp S., Zaczek R., Contrera J. F., Bissette G., et al. (1991) Role for brain corticotropin-releasing factor in the weight-reducing effects of chronic fenfluramine treatments in rats.Endocrinology 128, 3237–3246.

    PubMed  CAS  Google Scholar 

  • Arase K., York D. A., Shimuzu H., Shargill N. and Bray G. A. (1988) Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats.Am. J. Physiol. 255, E255–259.

    PubMed  CAS  Google Scholar 

  • Arbel I., Kadar T., Silbermann M. and Levy A. (1994) The effects of long-term corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats.Brain Res. 657, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Arias C., Arrieta I. and Tapia R. (1995) β-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices.J. Neurosci. Res. 41, 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Auphan M., DiDonato J. A., Rosette C., Helmberg A. and Karin M. (1995) Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of I-κB synthesis.Science 270, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Bagley J. and Moghaddam B. (1997) Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of preteatment with saline or diazepam.Neuroscience 77, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Balcar V. J. and Li Y. (1992) Heterogeneity of high affinity uptake ofl-glutamate andl-aspartate in the mammalian central nervous system.Life Sci. 51, 1467–1478.

    Article  PubMed  CAS  Google Scholar 

  • Bardgett M. E., Taylor G. T., Csernansky J. G., Newcomer J. W. and Nock B. (1994) Chronic corticosterone treatment impairs spontaneous alternation behavior in rats.Behav. Neural. Biol. 61, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Bartanusz V., Jezova D., Bertini L. T., Tilders F. J. H., Aubry J. M. and Kiss J. Z. (1993) Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons.Endocrinology 132, 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu S., Pelletier G., Vaudry H. and Barden N. (1989) Influence of the central nucleus of the amygdala on the content of corticotropin-releasing factor in the median eminence.Neuroendocrinology 49, 255–261.

    PubMed  CAS  Google Scholar 

  • Bender B. G., Lerner J. A. and Poland J. E. (1991) Association between corticosteroids and psychologic change in hospitalized asthmatic children.Ann. Allergy 66, 414–419.

    PubMed  CAS  Google Scholar 

  • Benveniste H., Drejer J., Schousboe A. and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  • Bjorntorp P. (1991) Metabolic implications of body fat distribution.Diabetes Care 14, 1132–1143.

    Article  PubMed  CAS  Google Scholar 

  • Bodnoff S. R., Humphreys A. G., Lehman J. C., Diamond D. M., Rose G. M. and Meaney M. L. (1995) Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and midaged rats.J. Neurosci. 15, 61–69.

    PubMed  CAS  Google Scholar 

  • Boston B. A., Blaydon K. M., Varnerin J. and Cone R. D. (1997) Independent and additive effects of central POMC and leptin pathways on murine obesity.Science 278, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  • Britton D. R., Koob G. F., Rivier J. and Vale W. (1982) Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty.Life Sci. 31, 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Bruce B. K., King B. M., Phelps G. R. and Veita M. C. (1982) Effects of adrenalectomy and corticosterone administration on hypothalamic obesity in rats.Am. J. Physiol. 243, E152–157.

    PubMed  CAS  Google Scholar 

  • Busbridge N. J., Carnie J. A., Dascombe M. J., Johnston J. A. and Rothwell N. J. (1990) Adrenalectomy reverses the impaired pyrogenic responses to interleukin-beta in obese Zucker rats.Int. J. Obes. 14, 809–814.

    PubMed  CAS  Google Scholar 

  • Butterfield D. A. (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer's disease.Chem. Res. Toxicol. 10, 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Caputo F. A., Ali S. F., Wolff G. L. and Scallet A. C. (1996) Neonatal MSG reduces hypothalamic DA, beta-endorphin, and delays weight gain in genetically obese (A viable yellow/alpha) mice.Pharmacol. Biochem. Behav. 53, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Chao H. M. and McEwen B. S. (1994) Glucocorticoids and the expression of mRNAs for neurotrophin, their receptors and GAP-43 in the rat hippocampus.Mol. Brain Res. 26, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Chautard T., Boudouresque F., Guillaume V. and Oliver C. (1993) Effect of excitatory amino acid on the hypothalamic-pituitary-adrenal axis in the rat during the stress-hyporesponsive period.Neuroendocrinology 57, 70–78.

    PubMed  CAS  Google Scholar 

  • Chou Y.-C., Lin W. J. and Sapolsky R. M. (1994) Glucocorticoids increase extracellular [3H]d-aspartate overflow in hippocampal cultures during cyanide-induced ischemia.Brain Res. 654, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Chowdrey H. S., Jessop D. S. and Lightman S. L. (1991) Altered adrenocorticotropin, corticosterone and oxytocin responses to stress during chronic salt load.Neuroendocrinology 54, 635–638.

    PubMed  CAS  Google Scholar 

  • Cintra A., Fuxe K., Agnati L. F., Persson L., Härfstrand A., Zoli M., et al. (1987a) Evidence for the existence of ornithine decarboxylase-immunoreactive neurons in the rat brain.Neurosci. Lett. 76, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Cintra A., Fuxe K., Harfstrand A., Agnati L. F., Tinner B., Wikstrom A.-C., et al. (1987b) Evidence for the presence of glucocorticoid receptor immunoreactivity in corticotropin-releasing factor and in growth hormone releasing factor immunoreactive neurones of the rat di- and telencephalon.Neurosci. Lett. 76, 275–280.

    Article  Google Scholar 

  • Clark A. S., Mitre M. C. and Brinck-Johnsen T. (1995) Anabolic-androgenic steroid and adrenal steroid effects on hippocampal plasticity.Brain Res. 679, 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Coleman P. D. and Flood D. G. (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer's disease.Neurobiol. Aging 8, 521–545.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T., Ferkany J. W. and Zaczek R. (1983) Kainic acid: insights from a neurotoxin into the pathophysiology of Huntington's disease.Neurobehav. Tox. Teratol. 5, 617–624.

    CAS  Google Scholar 

  • Cunningham J. J., Calles-Escandon J., Garrido F., Carr D. B. and Bode H. H. (1986) Hypercorticosteronuria and diminished pituitary responsiveness to corticotropin-releasing factor in obese Zucker rats.Endocrinology 118, 98–101.

    PubMed  CAS  Google Scholar 

  • Dachir S., Kadar T., Robinzon B. and Levy A. (1993) Cognitive deficits induced in young rats by longterm corticosterone administration.Behav. Neural Biol. 60, 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Dallman M. F., Akana S. F., Cascio C. S., Darlington D. N., Jacobson L. and Levin N. (1987) Regulation of ACTH secretion: Variations on a theme of B.Recent Prog. Horm. Res. 43, 113–173.

    PubMed  CAS  Google Scholar 

  • Dallman M. F., Strack A. M., Akana S. F., Bradbury M. J., Hanson E. S., Schribner K. A. and Smith M. (1993) Feast and famine: critical role of glucocorticoids with insulin in daily energy flow.Front. Neuroendocrinol. 14, 303–347.

    Article  PubMed  CAS  Google Scholar 

  • Davis M. (1992) The role of the amygdala in fear and anxiety.Annu. Rev. Neurosci. 15, 353–375.

    Article  PubMed  CAS  Google Scholar 

  • Dawson R., Pelleymounter M. A., Millard W. J., Liu S. and Eppler B. (1997) Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage.Am. J. Physiol. 273, E202–206.

    PubMed  CAS  Google Scholar 

  • De Bosscher K., Schmitz M. L., Vanden Berghe W., Plaisance S., Fiers W. and Haegeman G. (1997) Glucocorticoid-mediated repression of nuclear factor-κB-dependent transcription involves direct interference with transactivation.Proc. Natl. Acad. Sci. USA 94, 1504–1509.

    Article  Google Scholar 

  • De Goeij D. C. E., Binnekade R. and Tilders F. J. H. (1992a) Chronic stress enhances vasopressin but not corticotropin-releasing factor secretion during hypoglycemia.Am. J. Physiol 263, E394-E399.

    PubMed  Google Scholar 

  • De Goeij D. C. E., Dijkstra H. and Tilders F. J. H. (1992b) Chronic psychosocial stress enhances vasopressin but not corticotropin-releasing factor, in the external zone of the median eminence of male rats: relationship to subordinate status.Endocrinology 131, 847–853.

    Article  PubMed  Google Scholar 

  • De Goeij D. C. E., Jezova D. and Tilders F. J. H. (1992c) Repeated stress enhances vasopressin in corticotropin-releasing factor neurons in the paraventricular nucleus.Brain Res. 577, 165–168.

    Article  PubMed  Google Scholar 

  • De Leon M. J., McRae T., Tsai J. R., George A. E., Marcus D. L., Freedman M., et al. (1988) Abnormal cortisol response in Alzheimer's disease linked to hippocampal atrophy.Lancet 2, 391–392.

    PubMed  Google Scholar 

  • De Vos P., Saladin R., Auwerx J. and Staels B. (1995) Induction ofob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake.J. Biol. Chem. 270, 15958–15961.

    Article  PubMed  Google Scholar 

  • Devenport L., Knehans A., Sundstrom A. and Thomas T. (1989) Corticosterone's dual metabolic actions.Life Sci. 45, 1389–1396.

    Article  PubMed  CAS  Google Scholar 

  • Diorio D., Viau V. and Meaney M. J. (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.J. Neurosci. 13, 3839–3847.

    PubMed  CAS  Google Scholar 

  • Dohanics J., Kovacs K. J., Folly G. and Makara G. B. (1990) Long term salt loading impairs pituitary responsiveness to ACTH secretagogues and stress in rats.Peptides 11, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Dornhorst A., Carlson D. E., Seif S. M., Robinson A. G., Zimmerman E. A. and Gann D. S. (1981) Control of release of adrenocorticotropin and vasopressin by the supraoptic and paraventricular nuclei.Endocrinology 108, 1420–1424.

    PubMed  CAS  Google Scholar 

  • Dowd L. A. and Robinson M. B. (1996) Rapid stimulation of EAAC1-mediated Na+-dependentl-glutamate transport activity in C6 glioma cells by phorbol ester.J. Neurochem. 67, 508–516.

    Article  PubMed  CAS  Google Scholar 

  • Doyle P., Rohner-Jeanrenaud F. and Jeanrenaud B. (1993) Local cerebral glucose utilization in brains of lean and genetically obese (fa/fa) rats.Am. J. Physiol. 264, E29–36.

    PubMed  CAS  Google Scholar 

  • Dunn J. D. (1987) Plasma corticosterone responses to electrical stimulation of the bed nucleus of the stria terminalis.Brain Res. 407, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Dunn J. D. and Whitener J. (1986) Plasma corticosterone responses to electrical stimulation of the amygdaloid complex: Cytoarchitectural specificity.Neuroendocrinology 42, 211–217.

    PubMed  CAS  Google Scholar 

  • Eleftheriou B. E., Elias M. F. and Norman R. L. (1972) Effects of amygdaloid lesions on reversal learning in the deermouse.Physiol. Behav. 9, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Elkabir D. R., Wyatt M. E., Vellucci S. V. and Herbert J. (1990) The effects of separate or combined infusions of corticotrophin-releasing factor and vasopressin either intraventricularly or into the amygdala on aggressive and investigative behaviour in the rat.Regul. Pept. 28, 199–214.

    Article  PubMed  CAS  Google Scholar 

  • Elliott E. and Sapolsky R. (1992) Corticosterone enhances kainic acid-induced calcium mobilization in cultured hippocampal neurons.J. Neurochem. 59, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Elliott E. and Sapolsky R. (1993) Corticosterone impairs hippocampal neuronal calcium regulation: Possible mediating mechanisms.Brain Res. 602, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Emoto H., Koga C., Ishii H., Yokoo H., Yoshida M. and Tanaka M. (1993) A CRF antagonist attenuates stress-induced increases in NA turnover in extended brain regions in rats.Brain Res. 627, 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. L., Demediuk P., Panter S. S. and Vink R. (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury.Science 244, 798–800.

    Article  PubMed  CAS  Google Scholar 

  • Fagg G. E. and Foster A. C. (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system.Neuroscience 9, 701–719.

    Article  PubMed  CAS  Google Scholar 

  • Falls W. A., Miserendino M. J. D. and Davis M. (1992) Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala.J. Neurosci. 12, 854–863.

    PubMed  CAS  Google Scholar 

  • Farb C., Aoki C., Milner T., Kaneko T. and LeDoux J. (1992) Glutamate immunoreactive terminals in the lateral amygdaloid nucleus: A possible substrate for emotional memory.Brain Res. 593, 2517–2529.

    Article  Google Scholar 

  • Feldman S. and Conforti N. (1976) Feedback effects of dexamethasone on adrenocortical responses in rats with fornix lesions.Horm. Res. 7, 56–60.

    PubMed  CAS  Google Scholar 

  • Fine S. M., Angel R. A., Perry S. W., Epstein L. G., Rothstein J. D., Dewhurst S. and et al. (1996) Tumor necrosis factor α inhibits glutamate uptake by primary human astrocytes.J. Biol. Chem. 271, 15303–15306.

    Article  PubMed  CAS  Google Scholar 

  • Fischette C., Kosimurak B., Ediner H., Feder H. H. and Siegal A. (1980) Differential fornix ablations and the circadian rhythmicity of adrenal corticosterone secretion.Brain Res. 195, 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima M., Nakai Y., Tsukada T., Naito Y., Nakaishi S., Tominaga T., et al. (1992) Immunoreactive corticotropin-releasing hormone levels in the hypothalamus of female Wistar fatty rats.Neurosci. Lett. 138, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Gabr R. W., Birkle D. L. and Azzaro A. J. (1995) Stimulation of the amygdala by glutamate facilitates corticotropin-releasing factor release from the median eminence and activation of the hypothalamic-pituitary-adrenal axis in stressed rats.Neuroendocrinology 62, 333–339.

    PubMed  CAS  Google Scholar 

  • Gay V. L. and Plant T. M. (1987)N-methyl-dl-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatta).Endocrinology 120, 2289–2296.

    PubMed  CAS  Google Scholar 

  • Gegelashvili G., Civenni G., Racagni G., Danbolt N. C., Schousboe I. and Schousboe A. (1996) Glutamate receptor agonists up-regulate glutamate transporter GLAST in astrocytes.Neuroreport 8, 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Globus M. Y., Busto R., Dietrich W. D., Martinez E., Valdes I. and Ginsberg M. D. (1988) Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis.J. Neurochem. 51, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  • Glowa J. R., Barrett J. E., Russell J. and Gold P. W. (1992) Effects of corticotropin releasing hormone on appetitive behaviors.Peptides 13, 609–621.

    Article  PubMed  CAS  Google Scholar 

  • Gold P. W., Licinio J., Wong M.-L. and Chrousos G. P. (1995) Corticotropin releasing hormone in the pathophysiology of melancholic and atypical depression and in the mechanism of action of antidepressant drugs.Ann. NY. Acad. Sci. 771, 716–729.

    Article  PubMed  CAS  Google Scholar 

  • Goujon E., Parnet P., Cremona S. and Dantzer R. (1995) Endogenous glucocorticoids down regulate central effects of interleukin-1 beta on body temperature and behaviour in mice.Brain Res. 702, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Gray J. A. (1982)The Neuropsychology of Anxiety. Clarendon, Oxford.

    Google Scholar 

  • Gray J. A. and McNaughton N. (1983) Comparison between the behavioural effects of septal and hippocampal lesions: A review.Neurosci. Biobehav. Rev. 7, 119–188.

    Article  PubMed  CAS  Google Scholar 

  • Gray T. S., Carney M. E. and Magnuson D. J. (1989) Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: Possible role in stress-induced adrenocorticotropin release.Neuroendocrinology 50, 433–446.

    PubMed  CAS  Google Scholar 

  • Gray T. S., Piechowski R. A., Yracheta J. M., Rittenhouse P. A., Bethea C. L. and Van de Kar L. D. (1993) Ibotenic acid lesions in the bed nucleus of the stria terminalis attenuate conditioned stress-induced increases in prolactin, ACTH and corticosterone.Neuroendocrinology 57, 517–524.

    PubMed  CAS  Google Scholar 

  • Greenamyre J. T. and Porter R. H. (1994) Anatomy and physiology of glutamate in the CNS.Neurology 44, S7-S13.

    PubMed  CAS  Google Scholar 

  • Greenamyre J. T. and Young A. B. (1989) Excitatory amino acids and Alzheimer's disease.Neurobiol. Aging 10, 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Gurevich D., Siegel B., Dumlao M., Perl E., Chaitin P., Bagne C., et al. (1990) HPA axis responsivity to dexamethasone and cognitive impairment in dementia.Prog. Neuropsychopharmacol. Biol. Psychiatry 14, 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Hanisch U. K., Rowe W., Sharma S., Meany M. J. and Quirion R. (1994) Hypothalamic-pituitary-adrenal activity during chronic central administration of interleukin-2.Endocrinology 135, 2465–2472.

    Article  PubMed  CAS  Google Scholar 

  • Harbuz M. S., Stephanou, A., Sarlis, N. and Lightman, S. L. (1992) The effects of recombinant human interleukin (IL)-1 alpha, IL-1 beta or IL-6 on hypothalamo-pituitary-adrenal axis activation.J. Endocrinol. 133, 349–355.

    PubMed  CAS  Google Scholar 

  • Hardwick A. J., Linton E. A. and Rothwell N. J. (1989) Thermogenic effects of the antiglucocorticoid RU-486 in the rat: involvement of corticotropin-releasing factor and sympathetic activation of brown adipose tissue.Endocrinology 124, 1684–1688.

    PubMed  CAS  Google Scholar 

  • Hashimoto K., Suemaru S., Takao T., Sugawara M., Makino S. and Fensuka O. (1998) Corticotropinreleasing hormone and pituitary-adrenocortical responses in chronically stressed rats.Regul. Pept. 23, 117–126.

    Article  Google Scholar 

  • Hatzinger M., Z'brun A., Hemmeter U., Seifritz E., Baumann F., Holsboer-Trachsler E. et al. (1995) Hypothalamic-pituitary-adrenal system function in patients with Alzheimer's disease.Neurobiol. Aging 16, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Hauger R. L. and Aguilera G. (1992) Regulation of corticotropin-releasing hormone receptors and hypothalamic pituitary adrenal axis responsiveness during cold stress.J. Neuroendocrinol. 4, 617–624.

    Article  CAS  Google Scholar 

  • Hauger R. L., Millan M. A., Lorang M., Harwood J. P. and Aguilera G. (1988) Corticotropin-releasing factor receptors and pituitary adrenal responses during immobilization stress.Endocrinology 123, 396–405.

    PubMed  CAS  Google Scholar 

  • Heinrichs S. C., Lapsansky J., Behan D. P., Chan R. K., Sawchenko P. E., Lorang M., et al. (1996) Corticotropin-releasing factor-binding protein ligand inhibitor blunts excessive weight gain in genetically obese Zucker rats and rats during nicotine withdrawal.Proc. Natl. Acad. Sci. USA 93, 15475–15480.

    Article  PubMed  CAS  Google Scholar 

  • Herman J. O., Cullinan W. E. and Watson S. J. (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression.J. Neuroendocrinol. 6, 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Herman J. P., Adams D. and Prewitt C. (1995) Regulatory changes in neuroendocrine strees-integrative circuitry produced by a variable stress paradigm.Neuroendocrinology 61, 180–190.

    PubMed  CAS  Google Scholar 

  • Holt S. and York D. A. (1982) The effect of adrenalectomy on GDP binding to brown-adipose-tissue mitochondria of obese rat.Biochem. J. 208, 819–822.

    PubMed  CAS  Google Scholar 

  • Honkaniemi J., Pelto-Huikko M., Rechardt L., Isola J., Lammi A., Fuxe K., et al. (1992) Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nucleus.Neuroendocrinology 55, 451–459.

    PubMed  CAS  Google Scholar 

  • Horel J. A. (1978) The neuroanatomy of amnesia. A critique of the hippocampal memory hypothesis.Brain 101, 403–445.

    Article  PubMed  CAS  Google Scholar 

  • Horner H., Packan D. and Sapolsky R. (1990) Glucocortioicds inhibit glucose transport in cultured hippocampal neurons and glia.Neuroendocrinology 52, 57–62.

    PubMed  CAS  Google Scholar 

  • Hu Y., Dietrich H., Herold M., Heinrich P. C. and Wick G. (1993) Disturbed immuno-endocrine communication via the hypothalamo-pituitaryadrenal axis in autoimmune disease.Int. Arch. Allergy Immunol. 102, 232–241.

    Article  PubMed  CAS  Google Scholar 

  • Issa A. M., Rowe W., Gauthier S. and Meany M. J. (1990) Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats.J. Neurosci. 10, 3247–3254.

    PubMed  CAS  Google Scholar 

  • Jacobs L. and Johnson K. P. (1994) A brief history of the use of interferons as treatment of multiple sclerosis.Arch. Neurol. 51, 1245–1252.

    PubMed  CAS  Google Scholar 

  • Jacobson L. and Sapolsky R. (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.Endocr. Rev. 12, 118–134.

    PubMed  CAS  Google Scholar 

  • Jenike M. A. and Albert M. S. (1984) The dexamethasone suppression test in patients with presenile and senile dementia of the Alzheimer's type.J. Am. Geriatr. Soc. 32, 441–444.

    PubMed  CAS  Google Scholar 

  • Jessop D. S., Chowdrey H. S. and Lightman S. L. (1990) Inhibition of rat corticotropin-releasing factor and adrenocorticotropin secretion by an osmotic stimulus.Brain Res. 523, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Jezova D., Oliver C. and Jurcovicova J. (1991) Stimulation of adrenocorticotropin but not prolactin and catecholamine release by N-methyl-aspartic acid.Neuroendocrinology 54, 488–492.

    PubMed  CAS  Google Scholar 

  • Joanny P., Steinberg J., Oliver C. and Grino M. (1997) Glutamate andN-methyl-d-aspartate stimulate rat hypothalamic corticotropin-releasing factor secretionin vitro.J. Neuroendocrinol. 9, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Joels M. and De Kloet E. (1989) Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus.Science 245, 110–112.

    Article  Google Scholar 

  • Joels M. and De Kloet E. R. (1994) Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems.Prog. Neurobiol. 43, 1–36.

    Article  PubMed  CAS  Google Scholar 

  • Johnson C. L. and Johnson C. G. (1993) Substance P regulation of glutamate and cysteine transport in buman astrocytoma cells.Receptors Channels 1, 53–59.

    PubMed  CAS  Google Scholar 

  • Kanai Y., Smith C. P. and Hediger M. A. (1993) A new family of neurotransmitter transporters: The high-affinity glutamate transporters.FASEB J. 7, 1450–1459.

    PubMed  CAS  Google Scholar 

  • Keller J. N., Pang Z., Geddes J. W., Begley J. G., Germeyer A., Waeg G., et al. (1997) Impairment of glucose and glutamate transport, and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: Role of the lipid peroxidation product 4-hydroxynonenal.J. Neurochem. 269, 273–284.

    Google Scholar 

  • Keller-Wood M. E. and Dallman M. F. (1984) Corticosteroid inhibition of ACTH secretion.Endocr. Rev. 5, 1–24.

    PubMed  CAS  Google Scholar 

  • Kerr D., Campbell L., Thibault O. and Landfield P. (1992) Hippocampal glucocorticoid receptor activation enhances voltage-dependent calcium conductances: Relevance to brain aging.Proc. Natl. Acad. Sci. USA 89, 8527–8531.

    Article  PubMed  CAS  Google Scholar 

  • Killcross S., Robbins T. W. and Everitt B. J. (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within the amygdala.Nature 388, 377–380.

    Article  PubMed  CAS  Google Scholar 

  • King B. M., Arcenaux E. R., Cook J. T., Benjamin A. L. and Alheid G. F. (1996a) Temporal lobe lesion-induced obesity in rats: an anatomical investigation of the posterior amygdala and hippocampal formation.Physiol. Behav. 59, 843–848.

    Article  PubMed  CAS  Google Scholar 

  • King B. M., Cook J. T. and Dallman M. F. (1996b) Hyperinsulinemia in rats with obesity-inducing amygdaloid lesions.Am. J. Physiol. 271, R1156–1159.

    PubMed  CAS  Google Scholar 

  • King B. M., Rossiter K. N., Cook J. T. and Sam H. M. (1997) Amygdaloid lesion-induced obesity in rats in absence of finickiness.Physiol. Behav. 62, 935–938.

    Article  PubMed  CAS  Google Scholar 

  • Kiss A. and Aguilera G. (1993) Regulation of the hypothalamic pituitary adrenal axis during chronic stress: Responses to repeated intraperitoneal hypertonic saline injection.Brain Res. 630, 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Koch M. and Ebert U. (1993) Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/ basal nucleus of Meynert to the pontine reticular formation.Exp. Brain Res. 93, 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Kononen J., Soinila S., Persson H., Honkaniemi J., Hokfelt T. and Pelto-Huikko M. (1994) Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.Mol. Brain Res. 27, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Koob G. F., Heinrichs S. C., Pich E. M., Menzaghi F., Baldwin H., Miczek K., et al. (1993) The role of corticotropin-releasing factor in behavioural responses to stress.Ciba Found. Symp. 172, 277–289.

    PubMed  CAS  Google Scholar 

  • Kremer B., Tallaksen-Greene S. J. and Albin R. L. (1993) AMPA and NMDA binding sites in the hypothalamic lateral tuberal nucleus: implications for Huntington's disease.Neurology 43, 1593–1595.

    PubMed  CAS  Google Scholar 

  • Landfield P. W., Baskin R. K. and Pitler T. A. (1981) Brain aging correlates: Retardation by hormonal-pharmacological treatments.Science 214, 581–584.

    Article  PubMed  CAS  Google Scholar 

  • Langley S. C. and York D. A. (1990) Increased type II glucocorticoid-receptor numbers and glucocorticoid-sensitive enzyme activities in the brain of obese Zucker rat.Brain Res. 533, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Langley S. C. and York D. A. (1992) Glucocorticoid receptor numbers in the brain and liver of the obese Zucker rat.Int. J. Obes. Relat. Metab. Disord. 16, 135–143.

    PubMed  CAS  Google Scholar 

  • Liang K. C. and Lee E. H. Y. (1988) Intra-amygdala injections of corticotropin releasing factor facilitate inhibitory avoidance learning and reduce exploratory behavior in rats.Psychopharmacology 96, 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Lightman S. L. (1994) How does the hypothalamus respond to stress?Neurosciences 6, 215–219.

    CAS  Google Scholar 

  • Lindholm D., da Penha Berzaghi M., Cooper J., Thoenen H. and Castren E. (1994) Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus.Int. J. Dev. Neurosci. 12, 745–751.

    Article  PubMed  CAS  Google Scholar 

  • Lipton S. A. and Rosenberg P. A. (1994) Mechanisms of diseases: Excitatory amino acids as a final common pathway for neurologic disorders.N. Engl. J. Med. 330, 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., et al. (1997) Maternal care, hippocampal glucocorticoid receptors and hypothalamic-pituitary-adrenal responses to stress.Science 277, 1659–1662.

    Article  PubMed  CAS  Google Scholar 

  • Lowy M. T., Gault L. and Yamamoto B. K. (1993) Adrenalectomy attenuates stress-induced elevatrions in extracellular glutamate concentrations in the hippocampus.

  • Lowy M., Wittenberg L. and Novotney S. (1994) Adrenalectomy attenuates kainic acid-induced spectrin proteolysis and heat shock protein 70 induction in hippocampus and cortex.J. Neurochem. 63, 886–893.

    Article  PubMed  CAS  Google Scholar 

  • Lowy M., Wittenberg L. and Yamamoto B. (1995) Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats.J. Neurochem. 65, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Magariños A. M. and McEwen B. S. (1995) Stressinduced atrophy of apical dendrites of hippocampal CA3c neurons: Comparison of stressors.Neuroscience 69, 83–88.

    Article  PubMed  Google Scholar 

  • Magariños A. M., Verdugo J. M. G. and McEwen B. S. (1997) Chronic stress alters synaptic terminal structure in hippocampus.Proc. Natl. Acad. Sci. USA 94, 14,002–14,008.

    Article  Google Scholar 

  • Makino S., Smith M. A. and Gold P. W. (1995) Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: Association with reduction in glucocorticoid receptor mRNA levels.Endocrinology 136, 3299–3309.

    Article  PubMed  CAS  Google Scholar 

  • Marchington D., Rothwell N. J., Stock M. J. and York D. A. (1983) Energy balance, diet-induced thermogenesis and brown adipose tissue in lean and obese (fa/fa) Zucker rats after adrenalectomy.J. Nutri. 113, 1395–1402.

    CAS  Google Scholar 

  • Masliah E., Alford M., DeTeresa R., Mallory M. and Hansen L. (1996) Deficient glutamate trasport is associated with neurodegeneration in Alzheimer's disease.Ann. Neurol. 40, 759–766.

    Article  PubMed  CAS  Google Scholar 

  • Massieu L. and Tapia R. (1997) Glutamate uptake impairment and neuronal damage in young and aged rats in vivo.J. Neurochem. 69, 1151–1160.

    Article  PubMed  CAS  Google Scholar 

  • Mastorakos G., Chrousos, G. P. and Weber, J. S. (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans.J. Clin. Endocrinol. Metab. 77, 1690–1694.

    Article  PubMed  CAS  Google Scholar 

  • Mastorakos G., Weber, J. S., Magiakou, M. A., Gunn, H. and Chrousos, G. P. (1994) Hypothalamicpituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interluekin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion.J. Clin. Endocrinol. Metab. 79, 934–939.

    Article  PubMed  CAS  Google Scholar 

  • Matheson G. K., Branch B. J. and Taylor A. N. (1971) Effects of amygdaloid stimulation on pituitary-adrenal activity in conscious cats.Brain Res. 32, 151–167.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Rychlik B. (1990) Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor.Int. J. Dev. Neurosci. 8, 399–415.

    Article  PubMed  CAS  Google Scholar 

  • Mauri M., Sinforiani E., Bono G., Vignati F., Berselli M. E., Attanasio R., et al. Nappi G. (1993) Memory impairment in Cushing's disease.Acta Neurol. Scand. 87, 52–55.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy H. D., McKibbin P. E., Perkins A. V., Linton E. A. and Williams G. (1993) Alterations in hypothalamic NPY and CRF in anorexic tumorbearing rats.Am. J. Physiol. 264, E638–643.

    PubMed  CAS  Google Scholar 

  • McDonald A. J. (1987) Somatostatinergic projections from the amygdala to the bed nucleus of the stria terminalis and medial preoptic-hypothalamic region.Neurosci. Lett. 75, 271–277.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S. (1997) Possible mechanisms for atrophy of the human hippocampus.Mol. Psychiatry 2, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S., Angulo J., Cameron H., Chao H. M., Daniels D., Gannon M. N., et al. (1992) Paradoxical effects of adrenal steroids on the brain: protection versus degeneration,Biol. Psychiatr. 31, 177–199.

    Article  CAS  Google Scholar 

  • McEwen B. S., Conrad C. D., Kuroda Y., Frankfurt M., Magarinos A. M. and McKittrick C. (1997) Prevention of stress-induced morphological and cognitive consequences.Eur. Neuropharmacol. Suppl. 3, S323-S328.

    Article  Google Scholar 

  • McEwen B. S., Weiss J. M. and Schwartz L. S. (1968) Selective retention of corticosterone by limbic structures in rat brain.Nature 220, 911–912.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis R., Walker J. and Margules D. (1987) Genetically obese (ob/ob) mice are hypersensitive to glucocortioid stimulation of feeding but dramatically resist glucocorticoid-induced weight loss,Life Sci. 40, 1561–1570.

    Article  PubMed  CAS  Google Scholar 

  • McLay R. N., Freeman S. M., Harlan R. E., Ide C. F., Kastin A. J. and Zadina J. E. (1997) Aging in the hippocampus: Interrelated actions of neurotrophins and glucocorticoids.Neurosci. Behav. Rev. 21, 615–629.

    CAS  Google Scholar 

  • Meany M. J., Aitken D. H., van Berkel C., Bhatnagar S. and Sapolsky R. M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus.Science 239, 766–768.

    Article  Google Scholar 

  • Meeker R. B., Greenwood R. S. and Hayward J. N. (1993) Glutamate is the major excitatory transmitter in the supraoptic nuclei.Ann. NY Acad. Sci. 689, 636–639.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B. (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: Comparison to hippocampus and basal ganglia.J. Neurochem. 60, 1650–1656.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B., Bolinao M., Stein-Behrens B. and Sapolsky R. (1994) Glucocorticoids mediate the stress-induced accumulation of extracellular glutamate.Brain Res. 655, 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Moller C., Wiklund L., Sommer W., Thorsell A. and Heilig M. (1997) Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions.Brain Res. 760, 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Mook D. G., Fischer J. C. and Durr J. C. (1975) Some endocrine influences on hypothalamic hyperphagia.Horm. Behav. 6, 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Morley J. E. (1987) Neuropeptide regulation of appetite and weight.Endocr. Rev. 8, 256–287.

    PubMed  CAS  Google Scholar 

  • Nakaishi S., Nakai Y., Fukata J., Naito Y., Usui T. and Imura T. (1990) Immunoreactive corticotropinreleasing hormone levels in brain regions of genetically obese Zucker rats.Int. J. Obes. 14, 951–955.

    PubMed  CAS  Google Scholar 

  • Nasman B., Olsson T., Fagerlund M., Eriksson S., Viitanen M. and Carlstrom K. (1996) Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer's disease.Biol. Psychol. 39, 311–318.

    Article  CAS  Google Scholar 

  • Newcomer J. W., Craft S., Hershey T., and Bardgett M. E. (1994) Glucocorticoid-induced impairment in declarative memory in adult humans.J. Neurosci. 14, 2047–2053.

    PubMed  CAS  Google Scholar 

  • Newcomer J. W., Faustman W. O., Whiteford H. A., Moses J. A. and Csernansky J. G. (1991) Symptomatology and cognitive impairment associate independently with post-dexamethasone cortisol concentrations in unmedicated schizophrenic patients.Biol. Psychiatry 29, 855–864.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls D. and Attwell D. (1990) The release and uptake of excitatory amino acids.Trends Pharmacol. Sci. 11, 462–468.

    Article  PubMed  Google Scholar 

  • Norbiato G., Bevilacqua M., Vago T., Taddei A. and Clerici M. (1997) Glucocorticoids and the immune function in hypercortisolemic and cortisol-resistant patients.J. Clin. Endocrinol. Metab. 82, 3260–3263.

    Article  PubMed  CAS  Google Scholar 

  • O'Brien J. T., Ames D., Schweitzer I., Colman P., Desmond P. and Tress B. (1996) Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease.Br. J. Psychol. 168, 679–687.

    Google Scholar 

  • Oberfield S. E., Cowan L., Levine L. S., George A., David R., Litt A., et al. (1994) Altered cortisol response and hippocampal atrophy in pediatric HIV disease.J. Acquir. Immune Defic. Syndr. 7, 57–62.

    PubMed  CAS  Google Scholar 

  • Oitzl M. S. and De Kloet E. R. (1992) Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning.Behav. Neurosci. 106, 62–71.

    Article  PubMed  CAS  Google Scholar 

  • Oitzl M. S., Fluttert M. and De Kloet E. R. (1994) The effect of corticosterone on reactivity to spatial novelty is mediated by central mineralocorticosteroid receptors.Eur. J. Neurosci. 6, 1072–1079.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W. (1990) Excitotoxicity: an overview.Can. Dis. Weekly Rep. 16 Suppl. 1E, 47–57.

    Google Scholar 

  • Olney J. W., Wozniak D. F., Nuri B., and Farber M. D. (1997) Excitotoxic neurodegeneration in Alzheimer's disease.Arch. Neurol. 54, 1234–1240.

    PubMed  CAS  Google Scholar 

  • Otten U., Baumann J. B. and Girard J. (1979) Stimulation of the pituitary-adrenocortical axis by nerve growth factor.Nature 282, 1713–1721.

    Article  Google Scholar 

  • Pacak K., McCarty R., Palkovits M., Cizza G., Kopin I., Glodstein D. S., et al. (1995) Decreased central and peripheral catecholaminergic activation in obese Zucker rats.Endocrinology 136, 4360–4367.

    Article  PubMed  CAS  Google Scholar 

  • Pasquali R., Anconetani B., Chattat R., Biscotti M., Spinucci G., Casimirri F., et al. (1996) Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: Effects of the corticotropin-releasing factor/arginine vasopressin test and of stress.Metabolism 45, 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Pasquali R., Cantobelli S., Casamirri S., et al. (1993) The hypothalamic-pituitary-adrenal, axis in obsese women with different patterns of body fat distribution.J. Clin. Endocrinol. Metab. 77, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Patchev V. K., Karalis K. and Chrousos G. P. (1994) Effects of excitatory amino acid transmitters on hypothalamic corticotropin-releasing hormone (CRH) and arginive-vasopressin (AVP) release in vitro: implications in pituitary-adrenal regulation.Brain Res. 633, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Pich E. M., Lorang M., Yeganeh M., Rodriguez de Fonseca F., Raber J., Koob G. F., et al. (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis.J. Neurosci. 15, 5439–5447.

    CAS  Google Scholar 

  • Pitkanen A., Savander V. and LeDoux J. E. (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala.Trends Neurosci. 20, 517–523.

    Article  PubMed  CAS  Google Scholar 

  • Plotsky P. M. and Sawchenko P. E. (1987) Hypophyseal portal plasma levels, median eminence content and immunohistochemical staining of corticotropin releasing factor, arginine vasopressin and oxytocin after pharmacological adrenalectomy.Endocrinology 120, 1361–1369.

    PubMed  CAS  Google Scholar 

  • Plotsky P. M., Thrivikraman K. V., Watts A. G. and Hauger R. L. (1992) Hypothalamic-pituitaryadrenal axis function in the Zucker obese rat.Endocrinology 130, 1931–1941.

    Article  PubMed  CAS  Google Scholar 

  • Porter R. H. P. and Greenamyre J. T. (1995) Regional variations in the pharmacology of NMDA receptor channel blockers: Implications for therapeutic potential.J. Neurochem. 64, 614–623.

    Article  PubMed  CAS  Google Scholar 

  • Poucet B. and Benhanou S. (1997) The neuropsychology of spatial cognition in the rat.Crit. Rev. Neurobiol. 11, 101–120.

    PubMed  CAS  Google Scholar 

  • Quirarte G. L., Roozendaal B. and McGaugh J. L. (1997) Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala.Proc. Natl. Acad. Sci. USA 94, 14048–14053.

    Article  PubMed  CAS  Google Scholar 

  • Raber J., Chen S., Mucke L. and Feng L. (1997a) Corticotropin-releasing, factor and adrenocorticotrophic hormone as potential central mediators of OB effects.J. Biol. Chem. 272, 15057–15060.

    Article  PubMed  CAS  Google Scholar 

  • Raber J., O'Shea R. D., Bloom F. E. and Campbell I. L. (1997b) Modulation of hypothalamic-pituitary-adrenal function by transgenic expression of interleukin-6 in the CNS of mice.J. Neurosci. 17, 9743–9480.

    Google Scholar 

  • Raber J., Toggas S. M., Lee S., Bloom F. E., Epstein C. J. and Mucke L. (1996) Central nervous system expression of HIV-1 gp120 activates the hypothalamic-pituitary.-adrenal axis: Evidence for involvement of NMDA receptors and nitric oxide synthase.Virology 226, 362–373.

    Article  PubMed  CAS  Google Scholar 

  • Rapp P. R. and Gallagher M. (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits.Proc. Natl. Acad. Sci. USA 93, 9926–9930.

    Article  PubMed  CAS  Google Scholar 

  • Redgate E. S. and Fahringer E. E. (1973) A comparison of the pituitary adrenal activity elicited by electrical stimulation of preoptic, amygdaloid and hypothalamic sites in the rat brain.Neuroendocrinology 12, 334–343.

    PubMed  CAS  Google Scholar 

  • Reid I. R., Wattie D. J., Evans M. C. and Stapleton J. P. (1996) Testosterone therapy in glucocorticoidtreated men.Arch. Med. 156, 1173–1177.

    Article  CAS  Google Scholar 

  • Reul J. M. H. M. and De Kloet E. R. (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain within vitro autoradiography and computerized image analysis.J. Steroid Biochem. 24, 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Reus V. I. (1984) Hormonal mediation of the memory disorder in depression.Drug Dev. Res. 4, 489–500.

    Article  CAS  Google Scholar 

  • Reyes A., Luckhaus J. and Ferin M. (1990) Unexpected inhibitory action ofN-methyl-d-aspartate on luteinizing hormone release in adult ovariectomized rhesus monkeys: A role for the hypothalamic-pituitary-adrenal axis.Endocrinology 127, 724–729.

    PubMed  CAS  Google Scholar 

  • Ribeiro E. B., do Nascimento C. M., Andrade I. S., Hirata A. E. and Dolnikoff M. S. (1997) Hormonal and metabolic adaptations to fasting in monosodium glutamate-obese rats.J. Comp. Biol. 167, 430–437.

    CAS  Google Scholar 

  • Richard D., Rivest R., Naimi N., Timofeeva E. and Rivest S. (1996) Expression of corticotropinreleasing factor and its receptors in the brain of lean and obese Zucker rats.Endocrinology 137, 4786–4795.

    Article  PubMed  CAS  Google Scholar 

  • Rivest S. and Richard D. (1990) Involvement of corticotropin-releasing factor in the anorexia induced by exercise.Brain Res. Bull. 25, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Robinson M. B. and Coyle J. T. (1987) Glutamate and related acidic excitatory neurotransmitters: From basic science to clinical application.FASEB J. 1, 446–455.

    PubMed  CAS  Google Scholar 

  • Rohner-Jeanrenaud F., Walker C. D., Greco-Perotto R. and Jeanrenaud B. (1989) Central corticotropin-releasing factor administration prevents excessive body weight gain of genetically obese (fa/fa) rats.Endocrinology 124, 733–739.

    PubMed  CAS  Google Scholar 

  • Rothstein J. D. (1996) Excitotoxicity hypothesis.Neurology 47, S19-S25.

    PubMed  CAS  Google Scholar 

  • Rothstein J. D. and Kuncl R. W. (1995) Neuroprotective strategies in a model of chronic glutamatemediated motor neuron toxicity.J. Neurochem. 65, 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., et al. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate.Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell N. J. (1990) Central activation of thermogenesis by prostaglandins: dependence on CRF.Horm. Metab. Res. 22, 616–618.

    PubMed  CAS  Google Scholar 

  • Saito M. and Bray G. A. (1984) Adrenalectomy and food restriction in the genetically obese (ob/ob) mouse.Am. J. Physiol. 246, R20–25.

    PubMed  CAS  Google Scholar 

  • Sakanaka M., Shibasaki T. and Lederis K. (1986) Distribution and efferent projections of corticotropinreleasing factor-like immunoreactivity in the rat amygdaloid complex.Brain Res. 382, 213–238.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg M., Butcher S. P. and Hagberg H. (1986) Extracellular overflow of neuroactive amino acids during severe, insulin-induced hypoglycemia:in vivo dialysis of the rat hippocampus.J. Neurochem. 47, 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Saphier D. (1987) Cortisol alters firing rate and synaptic responses of limbic forebrain units.Brain Res. Bull. 19, 519–524.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky R. M. (1992)Stress, the Aging Brain, and the Mechanisms of Neuron Death. MIT Press, Cambridge, MA.

    Google Scholar 

  • Sapolsky R. M. (1994) Individual differences and the stress response.,Semin. Neurosci. 6, 261–269.

    Article  Google Scholar 

  • Sapolsky R. M. (1996) Stress, glucocorticoids, and damage to the nervous system: The current state of confusion.Stress 1, 1–19.

    PubMed  CAS  Google Scholar 

  • Sapolsky R. M., Krey L. C. and McEwen B. S. (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging.J. Neurosci. 5, 1222–1227.

    PubMed  CAS  Google Scholar 

  • Sapse A. T. (1997) Cortisol, high cortisol diseases and anti-cortisol therapy.Psychoneuroendocrinology 22 Suppl. 1, S3-S10.

    Article  PubMed  CAS  Google Scholar 

  • Scaccianoce S., Musculo L. A. A., Cigliana G., Navarra D., Nicolai R. and Angelucci L. (1991) Evidence for a specific role of vasopressin in sustaining pituitary-adrenocortical stress response in rat.Endocrinology 128, 3138–3143.

    PubMed  CAS  Google Scholar 

  • Scheinman R. I., Cogswell P. C., Lofquist A. K. and Baldwin A. S. (1995) Role of transcriptional activation of Iκ Bα in mediation of immunosuppression by glucocorticoids.Science 270, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E. D., Binnekade R., Janszen A. W. and Tilders F. J. (1996) Short stressor induced longlasting increases of vasopressin stores in hypothalamic corticotropin-releasing hormone (CRH)-neurons in adult rats.J. Neuroendocrinol. 8, 703–712.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E. D., Janszen A. W., Wouterlood, F. G. and Tilders F. J. (1995) Interleukin-1-induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH)-neurons and hyperresponsiveness of the hypothalamus-pituitary-adrenal axis.J. Neurosci. 15, 7417–7426.

    PubMed  CAS  Google Scholar 

  • Scott H. L., Tannenberg A. E. G. and Dodd P. R. (1995) Variant forms of neuronal glutamate transporter sites in Alzheimer's disease cerebral cortex.J. Neurochem. 64, 2193–2202.

    Article  PubMed  CAS  Google Scholar 

  • Scully J. L. and Otten U. (1995a) Neurotrophin expression modulated by glucocorticoids and oestrogen in immortalized hippocampal neurons.Mol. Brain Res. 31, 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Scully J. L. and Otten U. (1995b) Glucocorticoids, neurotrophins and neurodegeneration.J. Steroid Biochem. Mol. Biol. 52, 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Segal R. A., Pomeroy, S. L. and Stiles, C. D. (1995) Axonal growth and fasicculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells.J. Neurosci. 15, 4970–4981.

    PubMed  CAS  Google Scholar 

  • Shibasaki T., Yamauchi N., Kato Y., Masuda A., Imaki T., Hotta M., et al. (1988) Involvement of corticotropin-releasing factor in restraint stress-induced anorexia and reversion of the anorexia by somatostatin in the rat.Life Sci. 43, 1103–1110.

    Article  PubMed  CAS  Google Scholar 

  • Silverstein F. S., Buchanan K. and Johnston M. V. (1986) Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes.J. Neurochem. 47, 1614–1619.

    Article  PubMed  CAS  Google Scholar 

  • Singh V. B., Onaivi E. S., Phan T.-H. and Boadle-Biber M. C. (1990) The increases in rat cortical and midbrain tryptophan hydroxylase activity in response to acute or repeated sound stress are blocked by bilateral lesions to the central nucleus of the amygdala.,Brain Res. 530, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Slieker L. J., Sloop K. W., Surface P. L., Kriauciunas A., LaQuier F., Manetta J., et al. (1996) Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP.J. Biol. Chem. 271, 5301–5304.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A. (1996) Hippocampal vulnerability to stress and aging: Possible role of neurotrophic factors.Behav. Brain Res. 78, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A., Makino S., Altemus M., Michelson D., Hong S. K., Kvetnansky R., et al. (1995) Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus.Proc. Natl. Acad. Sci. USA 92, 8788–8792.

    Article  PubMed  CAS  Google Scholar 

  • Smythe J. W., Murphy D., Timothy C. and Costall B. (1997) Hippocampal mineralocorticoid, but not glucocorticoid, receptors modulate anxiety-like behaviour in rats.Pharmacol. Biochem. Behav. 56, 507–513.

    Article  PubMed  CAS  Google Scholar 

  • Spath-Schwalbe E., Born J., Schrezenmeier H., Bornstein S. R., Stromeyer P., Drechsler S., et al. (1994) Interleukin-6 stimulates the hypothalamus-pituitary-adrenocortical axis in man.J. Clin. Endocrinol. Metab. 79, 1212–1214.

    Article  PubMed  CAS  Google Scholar 

  • Spina M., Merlo-Pich E., Chan R. K., Basso A. M., Rivier J., Vale W. et al. (1996) Appetite-suppressing effects of urocortin, a CRF-related neuropeptide.Science 273, 1561–1564.

    Article  PubMed  CAS  Google Scholar 

  • Starkman M. N., Schteingart D. E. and Schork M. A. (1986) Cushing's syndrome after treatment: changes in cortisol and ACTH levels, and amelioration of the depressive syndrome.Psychiatry Res. 19, 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Stein-Behrens B. A., Elliot E. M., Miller C. A., Schilling J. W., Newcombe R. and Sapolsky R. M. (1992) Glucocorticoids exacerbate kainic acid-induced extracellular accumulation of excitatory amino acids in the rat hippocampus.J. Neurochem. 58, 1730–1736.

    Article  PubMed  CAS  Google Scholar 

  • Stein-Behrens B. A., Lin W. J. and Sapolsky R. M. (1994) Physiological elevations of glucocorticiods potentiate glutamate accumulation in the hippocampus.J. Neurochem. 63, 596–602.

    Article  PubMed  CAS  Google Scholar 

  • Sutton R. E., Koob G. F., Moal M. L., Rivier J. and Vale W. (1982) Corticotropin releasing factor produces behavioural activation in rats.Nature 297, 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi L. K., Kalin N. H., Burgt J. A. V. and Sherman J. E. (1989) Corticotropin-releasing factor modulates defensive-withdrawal and exploratory behavior in rats.Behav. Neurosci. 103, 648–654.

    Article  PubMed  CAS  Google Scholar 

  • Tannahill L. A., Sheward W. J., Robinson I. C. and Fink G. (1991) Corticotrophin-releasing factor-41, vasopressin and oxytocin release into hypophysial portal blood in the rat: effects of electrical stimulation of the hypothalamus, amygdala and hippocampus.J. Endocrinol. 129, 99–107.

    PubMed  CAS  Google Scholar 

  • Vago T., Clerici M. and Norbiato G. (1994) Gluco-corticoids and the immune system in AIDS.Bailliere's Clin. Endocrinol. Metab. 8, 789–802.

    Article  CAS  Google Scholar 

  • Vaughan J., Donaldson C., Bittencourt J., Perrin M. H., Lewis K., Sutton S., et al. (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor.Nature 378, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Vesce S., Bezzi P., Rossi D., Meldolesi J. and Volterra A. (1997) HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid.FEBS Lett. 411, 107–109.

    Article  PubMed  CAS  Google Scholar 

  • Virgin C., Ha T., Packan D., Tombaugh G., Yang S., Horner H., et al. (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: Implications for glucocorticoid neurotoxicity.J. Neurochem. 57, 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y., Gould E., Cameron H. A., Daniels D. C. and McEwen B. S. (1992) Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons.Hippocampus 2, 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Weiner M. F., Vobach S., Olsson K., Svetlik D. and Risser R. C. (1997) Cortisol secretion and Alzheimer's disease progression.Biol. Psychol. 42, 1030–1038.

    Article  CAS  Google Scholar 

  • Whelan T. B., Schteingart D. E., Starkman M. N. and Smith A. (1980) Neuropsychological deficits in Cushing's syndrome.J. Nerv. Ment. Dis. 168, 753–757.

    Article  PubMed  CAS  Google Scholar 

  • Whitnall M. H. (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system.Prog. Neurobiol. 40, 573–629.

    Article  PubMed  CAS  Google Scholar 

  • Wilckens T. (1995) Glucocorticoids and immune function: physiological relevance and pathogenic potential of hormonal dysfunction.Trends Pharmacol. Sci. 16, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Wilson L. D., Truong M. P., Narber A. R. and Aoki T. T. (1996) Anterior pituitary and pituitary-dependent target organ function in men infected with the human imunodeficiency virus.Metabol. Clin. Exp. 45, 738–746.

    CAS  Google Scholar 

  • Wolkowitz O. M., Reus V. I., Weingartner H., Thompson K., Breier A., Doran A., et al. (1990) Cognitive effects of corticosteroids in man.Am. J. Psychiatry 147, 1297–1303.

    PubMed  CAS  Google Scholar 

  • Woolley C. S., Gould E. and McEwen B. S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons.Brain Res. 531, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Ye Z. C. and Sontheimer H. (1996) Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide.Neuroreport 7, 2181–2185.

    Article  PubMed  CAS  Google Scholar 

  • Yukimara Y., Bray G. A. and Wolfsen A. R. (1978) Some effects of adrenalectomy in the fatty rat.Endocrinology 103, 1924–1928.

    Article  Google Scholar 

  • Zerangue N., Arriza J. L. and Kavanaugh M. P. (1995) Differential modulation of human glutamate transporter subtypes by arachidonic acid.J. Biol. Chem. 270, 6433–6435.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raber, J. Detrimental effects of chronic hypothalamic—pituitary—adrenal axis activation. Mol Neurobiol 18, 1–22 (1998). https://doi.org/10.1007/BF02741457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741457

Index Entries

Navigation