Skip to main content
Log in

Numerical method for estimating multivariate conditional distributions

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

A computational framework for estimation of multivariate conditional distributions is presented. It allows the forecast of the joint distribution of target variables in dependence on explaining variables. The concept can be applied to general distribution families such as stable or hyperbolic distributions. The estimation is based on the numerical minimization of the cross entropy, using the Multi-Level Single-Linkage global optimization method. Nonlinear dependencies of conditional parameters can be modeled with help of general functional approximators such as multi-layer perceptrons. In applications, the information about a complete distribution of forecasts can be used to quantify the reliability of the forecast or for decision support. This is illustrated on a case study concerning the spare parts demand forecast. The improvement of the forecast error due to using non-Gaussian distributions is presented in another case study concerning the truck sales forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aitken, A. (1935). On least squares and linear compbinations of observations.Proceedings of the Royal Statistical Society, 55:42–48.

    MATH  Google Scholar 

  • Bickel, P. J. and Doksum, K. A. (1977).Mathematical Statistics Holden-Day, Oakland, California.

    MATH  Google Scholar 

  • Bishop, C. M. (1995).Neural Networks for Pattern Recognition. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Bishop, C. M. and Nabney, I. T. (1996). Modelling conditional probability distributions for periodic variables.Neural Computation, 8:1123–1133.

    Article  Google Scholar 

  • Boender, C. (84).The generalized multinomial distribution: A Bayesian analysis and applications. PhD thesis, Erasmus Universiteit Rotterdam (Centrum voor Wiskunde en Informatice, Amsterdam.

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics, 31:307–327.

    Article  MathSciNet  Google Scholar 

  • Eberlein, E. and Prause, K. (2000). The generalized hyperbolic model: financial derivatives and risk measures.Mathematical Finance.

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation.Econometrica, 50(4):987–1007.

    Article  MathSciNet  Google Scholar 

  • Fang, K.-T., Kotz, S., and Ng, K.-W. (1990).Symmetric Multivariate and Related Distributions. Chapman and Hall, New York.

    Book  Google Scholar 

  • Fletcher, R. (1987).Practical Methods of Optimization. Wiley, New York.

    MATH  Google Scholar 

  • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks.Neural Networks, 2(3):183–192.

    Article  Google Scholar 

  • Hrycej, T. (1997).Neurocontrol: towards an industrial control methodology. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Kelker, D. (1970). Distribution theory of spherical distributions and a location-scale parameter.Sankhya, A, 32:419–430.

    MathSciNet  MATH  Google Scholar 

  • Kullback, S. (1959).Information theory and statistics. Wiley, New York.

    MATH  Google Scholar 

  • McCullagh, P. and Neider, J. A. (1989).Generalized linear models. Chapman and Hall, New York.

    Book  Google Scholar 

  • Neuneier, R., Hergert, F., Finnhoff, W., and Ormoneit, D. (1994). Estimation of conditional densities: A comparison of neural network approaches.ICANN94-Proceedings of the International Conference on Artificial Neural Networks, pages 689–692.

  • Nix, D. and Weigend, A. (1994). Estimating the mean and variance of the target probability distribution.World Congress of Neural Networks, Lawrence Erlbaum Associates.

  • O’Hagan, A. (1994).Kendall’s Advanced Theory of Statistics, Volume II B: Bayesian Inference. Arnold, London.

    Google Scholar 

  • Ormoneit, D. (1998).Probability Estimating Neural Networks. Shaker Verlag Aachen.

    Google Scholar 

  • Parzen, E. (1962). On estimation of probability density function and mode.Ann, Math. Stat, 35:1065–1076.

    Article  MathSciNet  Google Scholar 

  • Poggio, T. and Girosi, F. (1989). A theory of networks for approximation and learning. Technical Report Memo No. 1140, MIT Artificial Intelligence Laboratory.

  • Rachev, S. and Mittnik, S. (2000).Stable Paretian Models in Finance. Wiley &, Sons, Inc.

  • Redner, R. and Walker, H. (1984). Mixture densities, maximum likelihood and the em algorithm.SIAM Review, 26.

  • Rinnooy Kan, A. and Timmer, G. (1987). Stochastic global optimization methods, part i: Clustering methods, part ii: Multi-level methods.Mathematical Programming, 39(l):26–78.

    Google Scholar 

  • Rumelhart, D. and McClelland, J., editors (1986).Parallel Distributed Processing, volume 1. MIT Press, Cambridge.

    Google Scholar 

  • Schittenkopf, C., Dorffner, G., and Dockner, E. J. (2000). Forecasting timedependent conditional densities: A neural network approach.Journal of Forecasting, 19(4):355–374.

    Article  Google Scholar 

  • Stuart, A., Ord, K., and Arnold, S. (1999).Kendall’s Advanced Theory of Statistics, Volume II A: Classical Inference and the Linear Model. Arnold, London.

    Google Scholar 

  • Stützle, E. A. and Hrycej, T. (2001). Forecasting of conditional distributions - an application to the spare parts demand forecast. InProc. 2001 IASTED Int. Conf. on Artificial Intelligence and Soft Computing, Cancun, Mexico.

  • Weigend, A. S. and Shi, S. (2000). Predicting daily probability distributions of s&p500 returns.Journal of Forecasting, 19(4):375–392.

    Article  Google Scholar 

  • Williams, P. M. (1996a). Using neuronal networks to model conditional multivariate densities.Neural Computation, 8:843–854.

    Article  Google Scholar 

  • Williams, P. M. (1996b). Using neuronal networks to model conditional multivariate densities.Neural Computation, 8:843–854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sützle, E.A., Hrycej, T. Numerical method for estimating multivariate conditional distributions. Computational Statistics 20, 151–176 (2005). https://doi.org/10.1007/BF02736128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736128

Keywords

Navigation