Skip to main content
Log in

Continuum percolation of the four-bonding-site associating fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Wertheim’s integral equation theory for associating fluids is reformulated for the study of the connectedness properties of associating hard spheres with four bonding sites. The association interaction is described as a square-well saturable attraction between these sites. The connectedness version of the Ornstein-Zernike (OZ) integral equation is supplemented by the PY-like closure relation and solved analytically within an ideal network approximation in which the network is represented as resulting from the crossing of ideal polymer chains. The pair connectedness functions and the mean cluster size are calculated and discussed. The condition for the percolation transition and the analytical form of the percolation threshold are derived. The connection of the percolation with the gas-liquid phase transition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stauffer,Introduction to Percolation Theory (Taylor & Francis, London, 1985).

    Book  MATH  Google Scholar 

  2. P. G. de Gennes,Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.

    Google Scholar 

  3. S. A. Safran, I. Webman, and G. S. Grest,Phys. Rev. E 32:506 (1985).

    ADS  Google Scholar 

  4. A. Coniglio, U. de Angelis, and A. Forlani,J. Phys. A 10:1123 (1977).

    Article  ADS  Google Scholar 

  5. Y. C. Chiew and E. D. Glandt,J. Phys. A 16:2599 (1983).

    Article  ADS  Google Scholar 

  6. Y. C. Chiew, G. Stell, and E. D. Glandt,J. Chem. Phys. 83:761 (1985).

    Article  ADS  Google Scholar 

  7. G. Wu and Y. C. Chiew,J. Chem. Phys. 90:5024 (1989).

    Article  ADS  Google Scholar 

  8. S. Maran and L. Reatto,J. Chem. Phys. 89:5038 (1988).

    Article  ADS  Google Scholar 

  9. T. DeSimone, S. Demoulini, and R. M. Stratt,J. Chem. Phys. 85:391 (1986).

    Article  ADS  Google Scholar 

  10. J. Xu and G. Stell,J. Chem. Phys. 89:1101 (1988).

    Article  ADS  Google Scholar 

  11. Y. C. Chiew and Y. H. Wang,J. Chem. Phys. 89:6385 (1988).

    Article  ADS  Google Scholar 

  12. A. O. Weist and E. D. Glandt,J. Chem. Phys. 95:8365 (1991),97:4316 (1992).

    Article  ADS  Google Scholar 

  13. M. Holovko and J. P. Badiali,Chem. Phys. Lett. 204:511 (1993).

    Article  ADS  Google Scholar 

  14. G. Cassin, Yu. Duda, M. Holovko, J. P. Badiali, and M. Pileni,J. Chem. Phys. (in press).

  15. D. Laria and F. Vericat,Phys. Rev B. 40:353 (1989).

    Article  ADS  Google Scholar 

  16. K. Leung and D. Chandler,J. Stat. Phys. 63:837 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. O. Weist and E. D. Glandt,J. Chem. Phys. 101:5167 (1994).

    Article  ADS  Google Scholar 

  18. M. S. Wertheim,J. Stat. Phys. 35:19, 35 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. S. Wertheim,J. Stat. Phys. 42:459, 477 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. S. Wertheim,J. Chem. Phys. 85:2929 (1986).

    Article  ADS  Google Scholar 

  21. M. S. Wertheim,J. Chem. Phys. 87:73 (1987).

    Article  Google Scholar 

  22. H. E. Stanley and J. Teixeira,J. Chem. Phys. 73:3404 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  23. H. E. Stanley, J. Teixeira, A. Geiger, and R. L. Blumberg,Physica 106A:260 (1981).

    ADS  Google Scholar 

  24. R. L. Blumberg, H. E. Stanley, A. Geiger, and P. Mausbach,J. Chem. Phys. 80:5230 (1984).

    Article  ADS  Google Scholar 

  25. D. Ghonasgi and W. G. Chapman,Mol. Phys. 79:291 (1993).

    Article  ADS  Google Scholar 

  26. C. J. Segura and W. G. Chapman,Mol. Phys. 86:415 (1995).

    Article  ADS  Google Scholar 

  27. E. Vakarin, Yu. Duda, and M. F. Holovko,Mol. Phys. 90:613 (1997).

    ADS  Google Scholar 

  28. E. Vakarin, Yu. Duda, and M. F. Holovko,Mol. Phys. 90 (1997) (in press).

  29. G. Jackson, W. G. Chapman, and K. Gubbins,Mol. Phys. 65:1 (1988).

    Article  ADS  Google Scholar 

  30. W. G. Chapman, G. Jackson, and K. E. Gubbins,Mol. Phys. 65:1057 (1988).

    Article  ADS  Google Scholar 

  31. J. Chang and S. Sandler,J. Chem. Phys. 102:437;103:3196 (1995).

    Article  ADS  Google Scholar 

  32. J. Kolafa and I. Nezbeda,Mol. Phys. 72:777 (1991).

    Article  ADS  Google Scholar 

  33. I. Nezbeda and G. A. Iglesias-Silva,Mol. Phys. 69:767 (1990).

    Article  ADS  Google Scholar 

  34. G. Stell,J. Stat. Phys. 63:1203 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  35. M. S. Wertheim,J. Math. Phys. 5:643 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. R. J. Baxter,J. Chem. Phys. 49:2770 (1968).

    Article  ADS  Google Scholar 

  37. J. W. Perram,Mol. Phys. 30:1505 (1975).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakarin, E., Duda, Y. & Holovko, M. Continuum percolation of the four-bonding-site associating fluids. J Stat Phys 88, 1333–1352 (1997). https://doi.org/10.1007/BF02732436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732436

Key Words

Navigation