Skip to main content
Log in

Metastates in disordered mean-field models: Random field and hopfield models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We rigorously investigate the size dependence of disordered mean-field models with finite local spin space in terms of metastates. Thereby we provide an illustration of the framework of metastates for systems of randomly competing Gibbs measures. In particular we consider the thermodynamic limit of the empirical metastate\(1/N\sum\nolimits_{n - 1}^N {\delta _{\mu _\eta (\eta )} } \), whereμ n (η) is the Gibbs measure in the finite volume {1,…,n} and the frozen disorder variableη is fixed. We treat explicitly the Hopfield model with finitely many patterns and the Curie-Weiss random field Ising model. In both examples in the phase transition regime the empirical metastate is dispersed for largeN. Moreover, it does not converge for a.e.η, but rather in distribution, for whose limits we given explicit expressions. We also discuss another notion of metastates, due to Aizenman and Wehr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. G. Amaro de Matos, A. E. Patrick, and V. A. Zagrebnov, Random Infinite-Volume Gibbs States for the Curie-Weiss Random Field Ising Model,J. Stat. Phys. 66:139–164 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. M. G. Amaro de Matos and J. F. Perez, Fluctuations in the Curie-Weiss Version of the Random Field Ising Model,J. Stat. Phys. 62:587–608 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Aizenman and J. Wehr, Rounding Effects of Quenched Randomness on First-Order Phase Transitions,Comm. Math. Phys. 130:489–528 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Bovier and V. Gayrard, The retrieval phase of the Hopfield model: A rigorous analysis of the overlap distribution, to appear inProb. Theor. Rel. Fields (1995).

  5. A. Bovier and V. Gayrard, Hopfield models as a generalized random mean field model, WIAS preprint 253, Berlin (1996), to appear in “Mathematics of spin glasses and neural networks,” A. Bovier and P. Picco, eds., “Progress in Probability,” Birkhäuser (1997).

  6. A. Bovier, V. Gayrard, and P. Picco, Gibbs states of the Hopfield model in the regime of perfect memory,Prob. Theor. Rel. Fields 100:329–363 (1994); Gibbs states of the Hopfield model with extensively many patterns,J. Stat. Phys. 79:395–414 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Comets, Large Deviation Estimates for a Conditional Probability Distribution. Applications to Random Interaction Gibbs Measures,Prob. Th. Rel. Fields 80:407–432 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-D. Deuschel and D. W. Stroock,Large Deviations, Pure and Applied Mathematics, vol. 137, Academic Press, Boston (1989).

    Google Scholar 

  9. A. Dembo and O. Zeitouni,Large Deviations Techniques, Jones and Bartlett, Boston, London (1993).

    MATH  Google Scholar 

  10. R. S. Ellis, Entropy,Large Deviations, and Statistical Mechanics, Grundlehren der mathematischen Wissenschaften, vol. 271, Springer, New York.

  11. W. Feller,An Introduction yo Probability Theory and its Applications, Wiley, New York, London, Sidney, (1966).

    Google Scholar 

  12. B. Gentz, An almost sure Central Limit Theorem for the overlap parameters in the Hopfield model,Stochastic Process. Appl. 62, no. 2, 243–262 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. O. Georgii,Gibbs measures and phase transitions. Studies in mathematics, vol. 9 (de Gruyter, Berlin, New York, 1988).

    Google Scholar 

  14. J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities,Proc. Natl. Acad. Sci. USA 79:2554–2558 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Ledrappier, Pressure and Variational Principle for Random Ising Model,Comm. Math. Phys. 56:297–302 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J. T. Lewis, C. E. Pfister, and W. G. Sullivan, Entropy, Concentration of Probability and Conditional Limit Theorems,Markov Proc. Rel. Felds 1:319–386 (1995).

    MathSciNet  MATH  Google Scholar 

  17. C. M. Newman,Topics in Disordered Systems, to appear in “ETH Lecture Notes Series,” Birkhäuser (1996).

  18. C. M. Newman and D. L. Stein, Chaotic Size Dependence in Spin Glasses, inCellular Automata and Cooperative Systems, Boccara, Goles, Martinez, Picco (Eds.), Nato ASI Series C Vol. 396, Kluwer, Dordrecht (1993).

    Google Scholar 

  19. C. M. Newman and D. L. Stein, Non-Mean Field Behavior in realistic Spin glasses,Phys. Rev. Lett. 76, No. 3, 515 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  20. C. M. Newman and D. L. Stein, Spatial Inhomogeneity and thermodynamic chaos,Phys. Rev. Lett. 76, No. 25, 4821 (1996).

    Article  ADS  Google Scholar 

  21. G. Parisi, Recent rigorous results support the predictions of spontaneously broken replica symmetriy for realistic spin glass, preprint, March, 1996. Available as condmat preprint 9603101 at http://www.sissa.it.

  22. E. Rio, Strong Approximation for set-indexed partial-sum processes, via KMT constructions II,Ann. Prob. 21, No. 3, 1706–1727 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Seppäläinen, Entropy, limit theorems, and variational principles for disordered lattice systems,Commun. Math. Phys. 171:233–277 (1995).

    Article  ADS  MATH  Google Scholar 

  24. S. R. Salinas and W. F. Wreszinski, On the Mean-Field Ising Model in a Random External Field,J. Stat. Phys. 41:299–313 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Ledoux, M. Talagrand,Probability in Banach Spaces, Springer Verlag (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Külske, C. Metastates in disordered mean-field models: Random field and hopfield models. J Stat Phys 88, 1257–1293 (1997). https://doi.org/10.1007/BF02732434

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732434

Key Words

Navigation