Skip to main content
Log in

On the equivalence of the parallel channel and the correlated cluster relaxation models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The question of the origins of nonexponential relaxation is addressed in terms of the probabilistic approach to relaxation. The interconnection between two differently rooted probabilistic models, i.e., between the parallel channel and the correlated cluster models, is presented. We show that clearly different probabilistic origins yield in both approaches a well-defined class of universally valid two-power-law responses with the stretched-exponential and exponential decay laws as special cases. The equivalence of both models indicates that variations in the local environment of the relaxing configurational units (parallel channel relaxation) can provide a basis for self-similar relaxation dynamics without the need for hierarchically constrained dynamics (correlated clusters relaxation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Jonscher,Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996).

    Google Scholar 

  2. T. V. Ramakrishnan and M. Raj Lakshmi,Non-Debye Relaxation in Condensed Matter (World Scientific, Singapore, 1987).

    Google Scholar 

  3. D. Richter, A. J. Dianoux, W. Petry, and J. Teixeira,Dynamics of Disordered Materials (Springer Verlag, Berlin, 1989).

    Book  Google Scholar 

  4. J. Colmenero,J. Non-Cryst. Solids 131–133:860 (1991).

    Article  Google Scholar 

  5. J. Colmenero, A. Alegria, J. M. Alberdi, F. Alvarez, and B. Frick,Phys. Rev. B 44:7321 (1991).

    Article  ADS  Google Scholar 

  6. A. Plonka,Prog. Reaction Kinetics 16:157 (1991);Ann. Rep. Prog. Chem. 89:37 (1992).

    Google Scholar 

  7. G. Williams and D. C. Watts,Trans. Faraday Soc. 66:80 (1970).

    Article  Google Scholar 

  8. S. Havriliak Jr and S. J. Havriliak,J. Non-Cryst. Solids 172–174:297 (1994).

    Article  Google Scholar 

  9. L. Mayants,The Enigma of Probability in Physics (Reidel, Dordrecht, 1984).

    Book  Google Scholar 

  10. G. Nicolis and I. Prigogine,Exploring Complexity (Freeman, New York, 1989).

    Google Scholar 

  11. J. Klafter and M. F. Shlesinger,Proc. Natl. Acad. Sci. USA 83:848 (1986).

    Article  ADS  Google Scholar 

  12. K. W. Wagner,Ann. Phys. 4–40:817 (1913).

    Article  Google Scholar 

  13. K. L. Ngai,Comments Solid State Phys. 9:127 (1979);9:141 (1980).

    Google Scholar 

  14. R. G. Palmer, D. Stein, E. S. Abrahams, and P. W. Anderson,Phys. Rev. Lett. 53:958 (1984).

    Article  ADS  Google Scholar 

  15. E. W. Montroll and J. T. Bendler,J. Stat. Phys. 34:129 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J. T. Bendler,J. Stat. Phys. 36:625 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. K. Weron,Acta Phys. Pol. A 70:529 (1986).

    MathSciNet  ADS  Google Scholar 

  18. I. M. Hodge,J. Non-Cryst. Solids 169:211 (1994).

    Article  ADS  Google Scholar 

  19. A. Hunt,J. Non-Cryst. Solids 168:258 (1994).

    Article  ADS  Google Scholar 

  20. I. Koponen,J. Non-Cryst. Solids 189:154 (1995).

    Article  ADS  Google Scholar 

  21. K. Weron,J. Phys: Condens. Matter 3:9151 (1991);4:10507 (1992).

    Article  ADS  Google Scholar 

  22. K. Weron and A. Jurlewicz,J. Phys. A.: Math. Gen. 26:395 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  23. L. A. Dissado and R. M. Hill,Proc. R. Soc. A 390:131 (1983).

    Article  ADS  Google Scholar 

  24. V. M. Zolotarev,One-dimensional Stable Distributions (American Mathematical Society, Providence, 1986).

    MATH  Google Scholar 

  25. A. Janicki and A. Weron,Simulation and Chaotic Behavior of α-Stable Stochastic Processes (Marcel Dekker, New York, 1994).

    Google Scholar 

  26. A. Weron, K. Weron, and W. A. Woyczynski,J. Stat. Phys. 78:1027 (1995).

    Article  ADS  MATH  Google Scholar 

  27. V. Halpern,J. Phys.: Condens. Matter 7:7687 (1995).

    Article  ADS  Google Scholar 

  28. R. N. Pillai,Ann. Inst. Statist. Math. 42:157 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Weron and M. Kotulski,Physica A 232:180 (1996).

    Article  ADS  Google Scholar 

  30. A. Jurlewicz and K. Weron,J. Stat. Phys. 73:69 (1993).

    Article  ADS  MATH  Google Scholar 

  31. A. Jurlewicz,J. Stat. Phys. 79:993 (1995).

    Article  ADS  MATH  Google Scholar 

  32. A. Jurlewicz, A. Weron, and K. Weron,Appl. Math. 23:379 (1996).

    MathSciNet  MATH  Google Scholar 

  33. L. Devroye,Non-Uniform Random Variate Generation (Springer, New York, 1986).

    MATH  Google Scholar 

  34. K. Weron,J. Phys.: Condens. Matter 4:10503 (1992).

    Article  Google Scholar 

  35. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1972).

    MATH  Google Scholar 

  36. M. R. Leadbetter, G. Lindgren, and H. Rootzen,Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1986).

    Google Scholar 

  37. T. J. Kozubowski and A. K. Panorska,Statistics Prob. Letters,29:307 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  38. T. J. Kozubowski and K. Podgórski, submitted.

  39. A. Hunt, J. Phys.:Condens. Matter 6:8087 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weron, K., Kotulski, M. On the equivalence of the parallel channel and the correlated cluster relaxation models. J Stat Phys 88, 1241–1256 (1997). https://doi.org/10.1007/BF02732433

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732433

Key Words

Navigation