Skip to main content
Log in

Entropy production in open volume-preserving systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe a mechanism leading to positive entropy production in volume-preserving systems under nonequilibrium conditions. We consider volume-preserving systems sustaining a diffusion process like the multibaker map or the Lorentz gas. A continuous flux of particles is imposed across the system resulting in a steady gradient of concentration. In the limit where such flux boundary conditions are imposed at arbitrarily separated boundaries for a fixed gradient, the invariant measure becomes singular. For instance, in the multibaker map, the limit invariant measure has a cumulative function given in terms of the nondifferentiable Takagi function. Because of this singularity of the invariant measure, the entropy must be defined as a coarse-grained entropy instead of the fined-grained Gibbs entropy, which would require the existence of a regular measure with a density. The coarse-grained entropy production is then shown to be asymptotically positive and, moreover, given by the entropy production expected from irreversible thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Hoover,Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  2. D. J. Evans, E. G. D. Cohen, and G. P. Morris,Phys. Rev. A 42:5990 (1990); D. J. Evans and G. P. Morris,Statistical Mechanics of Nonequilibrium Liquids (Academic, New York, 1990).

    Article  ADS  Google Scholar 

  3. G. Gallavotti and E. G. D. Cohen,Phys. Rev. Lett. 74:2694 (1995);J. Stat. Phys. 80:931 (1995); G. Gallavotti,Phys. Rev. Lett. 77:4334 (1996).

    Article  ADS  Google Scholar 

  4. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai,Phys. Rev. Lett. 70:2209 (1993);Commun. Math. Phys. 154:569 (1993); N. I. Chernov and J. L. Lebowitz,J. Stat. Phys. 86:953 (1997).

    Article  ADS  Google Scholar 

  5. D. Ruelle,J. Stat. Phys. 85:1 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. W. Breymann, T. Tél, and J. Vollmer,Phys. Rev. Lett. 77:2945 (1996).

    Article  ADS  Google Scholar 

  7. G. Nicolis and C. Nicolis,Phys. Rev. A 38:427 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G. Nicolis and D. Daems,J. Phys. Chem. 100:10187 (1996).

    Article  Google Scholar 

  9. I. Prigogine,Introduction to Thermodynamics of Irreversible Processes (Wiley, New York, 1961).

    MATH  Google Scholar 

  10. S. de Groot and P. Mazur,Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  11. P. Glansdorff and I. Prigogine,Thermodynamics of Structure, Stability, and Fluctuations (Wiley, New York, 1977).

    Google Scholar 

  12. G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    MATH  Google Scholar 

  13. M. C. Mackey,Rev. Mod. Phys. 61:981 (1989).

    Article  ADS  Google Scholar 

  14. S. Tasaki and P. Gaspard,J. Stat. Phys. 81:935 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P. Gaspard,Phys. Rev. E 53:4379 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  16. L. A. Bunimovich and Ya. G. Sinai,Commun. Math. Phys. 78:247, 479 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Gaspard,J. Stat. Phys. 68:673 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P. Gaspard and G. Nicolis,Phys. Rev. Lett. 65:1693 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P. Gaspard,Chaos 3:427 (1993); P. Gaspard, in:Dynamical Systems and Chaos, edited by Y. Aizawa, S. Saito, and K. Shiraiwa (World Scientific, Singapore, 1995) Vol. 2, pp. 55–68.

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Gaspard and F. Baras,Phys. Rev. E 51:5332 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  21. J. R. Dorfman and P. Gaspard,Phys. Rev. E 51:28 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  22. P. Gaspard and J. R. Dorfman,Phys. Rev. E 52:3525 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  23. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).

    MATH  Google Scholar 

  24. P. Gaspard and X.-J. Wang,Phys. Rep. 235:321 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. K. Pathria,Statistical Mechanics (Pergamon, Oxford, 1972).

    Google Scholar 

  26. T. Takagi,Proc. Phys. Math. Soc. Japan Ser. II 1:176 (1903); M. Hata and M. Yamaguti,Jpn. J. Appl. Math. 1:183 (1984); M. Hata, in:Patterns and Waves, T. Nishida, M. Mimura, and H. Fujii, eds. (Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1986) pp. 259–278.

    Google Scholar 

  27. J. L. Lebowitz,Phys. Rev. 114:1192 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J. A. McLennan Jr.,Phys. Rev. 115:1405 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. D. N. Zubarev,Sov. Phys. Dokl. 6:776 (1962);Nonequilibrium Statistical Thermodynamics (Consultants, New York, 1974).

    MathSciNet  ADS  Google Scholar 

  30. H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspard, P. Entropy production in open volume-preserving systems. J Stat Phys 88, 1215–1240 (1997). https://doi.org/10.1007/BF02732432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732432

Key Words

Navigation