Skip to main content
Log in

Distribution function for large velocities of a two-dimensional gas under shear flow

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The high-velocity distribution of a two-dimensional dilute gas of Maxwell molecules under uniform shear flow is studied. First we analyze the shear-rate dependence of the eigenvalues governing the time evolution of the velocity moments derived from the Boltzmann equation. As in the three-dimensional case discussed by us previously, all the moments of degreek⩾4 diverge for shear rates larger than a critical valuea (k)c , which behaves for largek asa (k)c k −1. This divergence is consistent with an algebraic tail of the formf(V) ∼V −4-σ(a), where σ is a decreasing function of the shear rate. This expectation is confirmed by a Monte Carlo simulation of the Boltzmann equation far from equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ikenberry and C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. I,J. Rat. Mech. Anal. 5:1–54 (1956);

    MathSciNet  MATH  Google Scholar 

  2. C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. II,J. Rat. Mech. Anal. 5:55–128 (1956).

    MathSciNet  MATH  Google Scholar 

  3. C. Truesdell and R. G. Muncaster,Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas (Academic Press, New York, 1980).

    Google Scholar 

  4. A. Santos and V. Garzó, Exact moment solution of the Boltzmann equation for uniform shear flow,Physica A 213:409–425 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Santos, V. Garzó, J. J. Brey, and J. W. Dufty, Singular behavior of shear flow far from equilibrium,Phys Rev. Lett. 71:3971–3974 (1993);72:1392 (Erratum) (1994).

    Article  ADS  Google Scholar 

  6. J. M. Montanero, A. Santos and V. Garzó, Singular behavior of the velocity moments of a dilute gas under uniform shear flow,Phys. Rev. E 53:1269–1272 (1996).

    Article  ADS  Google Scholar 

  7. G. A. Bird,Molecular gas dynamics and the direct simulation of gas flows (Clarendon, Oxford, 1994).

    Google Scholar 

  8. R. Dorfman and H. van Beijeren, The kinetic-theory of gases, inStatistical Mechanics. Part B: Time-dependent processes, B. J. Berne, ed. (Plenum Press, New York, 1977), pp. 65–179.

    Google Scholar 

  9. M. H. Ernst, Nonlinear model-Boltzmann equations and exact solutions,Phys. Rep. 78:1–171 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. A. McLennan,Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  11. D. J. Evans and G. P. Morriss,Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    MATH  Google Scholar 

  12. For a perturbation solution through ordera 3 in the three-dimensional case, see J. M. Montanero and A. Santos, Nonequilibrium entropy of a sheared gas,Physica A 225:7–18 (1996).

    Article  ADS  Google Scholar 

  13. E. M. Hendriks and T. M. Nieuwenhuizen, Solution to the nonlinear Boltzmann equation for Maxwell models for nonisotropic initial conditions,J. Stat. Phys. 29:591–615 (1982). Notice a misprint in Eq. (2.16).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Gómez Ordóñez, J. J. Brey, and A. Santos, Shear-rate dependence of the viscosity for dilute gases,Phys. Rev. A 39:3038–3040 (1989); J. M. Montanero and A. Santos, Comparison of the DSMC method with an exact solution of the Boltzmann equation, inRarefied Gas dynamics, J. Harvey and G. Lord, eds., (Oxford University Press, Oxford, 1995), pp. 899–905; C. Cercignani and S. Cortese, Validation of a Monte Carlo simulation of the plane Couette flow of a rarefied gas,J. Stat. Phys. 75:817–838 (1994).

    Article  ADS  Google Scholar 

  15. J. M. Montanero, A. Santos, and V. Garzó, Monte Carlo simulation of the Boltzmann equation for uniform shear flow,Phys. Fluids 8:1981–1983 (1996).

    Article  ADS  MATH  Google Scholar 

  16. Nonlinear Fluid Behavior, H. J. M. Hanley, ed. (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  17. The Microscopic Approach to Complexity by Molecular Simulations, M. Mareschal and B. L. Holian, eds.,Physica A 240(1–2) (1997).

  18. J. M. Montanero, V. Garzó, and A. Santos, High-velocity tail in a dilute gas under shear, inRarefied Gas Dynamics, C. Shen, ed. (Peking University Press, in press).

  19. M. Abramowitz and I. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanero, J.M., Santos, A. & Garzó, V. Distribution function for large velocities of a two-dimensional gas under shear flow. J Stat Phys 88, 1165–1181 (1997). https://doi.org/10.1007/BF02732430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732430

Key Words

Navigation