Skip to main content
Log in

Burgers equation with self-similar gaussian initial data: Tail probabilities

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The statistical properties of solutions of the one-dimensional Burgers equation in the limit of vanishing viscosity are considered when the initial velocity potential is fractional Brownian motion (FBM). We establish the asymptotic power-law order for log-probability of large values, both velocity and shock (amplitude of velocity discontinuity). This confirms the conjecture of U. Frisch and his collaborators. Rigorous results for this problem were previously derived for the case of Brownian motion using Markov techniques. Our approach is based on the intrinsic properties of FBM and the theory of extreme values for Gaussian processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Avellaneda, Statistical properties of shocks in Burgers turbulence, II: tail probabilities for velocities, shock-strengths and rarefaction intervals,Commun. Math. Phys. 169:N1, 45–59 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M. Avellaneda and W. E., Statistical properties of shocks in Burgers turbulence,Commun. Math. Phys. 172:N1, 13–38 (1995).

    Article  ADS  MATH  Google Scholar 

  3. J. M. Burgers,The nonlinear diffusion equation (Reidel, Do Dordrecht, 1974).

    MATH  Google Scholar 

  4. S. Gurbatov, A. Malakchov, and A. Saichev,Nonlinear random waves and turbulence in nondispersive media: waves, rays and particles (Manchester Univ Press, New York, 1991).

    MATH  Google Scholar 

  5. K. Handa, A remark on shocks in inviscid Burgers’s trbulence. In F. M. N. Fitzmaurice, D. Gurarie, F. Mc Caughan, and W. A. Woyczyński (eds.),Nonlinear waves and weak turbulence (Birkhäuser, Boston, 1993), pp. 239–445.

    Google Scholar 

  6. B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications,SIAM Rev. 10:422–437 (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Molchanov, D. Surgailis, and W. Woyczyński, Hyperbolic asymptotics in Burgers’ Turbulence and Extremal Processes,Commun. Math. Phys. 168:209–226 (1995).

    Article  ADS  MATH  Google Scholar 

  8. S. Orey, Growth rates of Gaussian processes with stationary increments,Bull. Amer. Math. Soc. 77:609–612 (1971).

    MathSciNet  Google Scholar 

  9. V. I. Piterbarg and V. P. Prisyzhnyuk, Asymptotic of the probability of large deviation of Gaussian nonstationary process,Prob. Theory and Math. Statistics 18:121–134 (1978).

    Google Scholar 

  10. Ya. Sinai, Statistics of shocks in solutions of inviscid Burgers equation,Commun. Math. Phys. 148:601–622 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Z. S. She, E. Aurell, and U. Frisch, The inviscid Burgers equation with initial data of Brownian type,Commun. Math. Phys. 148:623–641 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. D. Slepian, The one-sided barrier problem for Gaussian noise,Bell. System Techn. J. 41:463–501 (1962).

    MathSciNet  Google Scholar 

  13. M. Vergassola, B. Dubrulle, U. Frisch, and A. Noullez, Burgers’ equation, Devil’s staircases and the mass distribution for large-scale structures,Astron. Astrophys. 289:325–356 (1994).

    ADS  Google Scholar 

  14. S. F. Shandarin and Y. B. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium,Rev. Mod. Phys. 61:N2, 185–220 (1989).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Molchan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molchan, G.M. Burgers equation with self-similar gaussian initial data: Tail probabilities. J Stat Phys 88, 1139–1150 (1997). https://doi.org/10.1007/BF02732428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732428

Key Words

Navigation