Skip to main content
Log in

On the stability of time-harmonic localized states in a disordered nonlinear medium

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the problem of localization in a disordered one-dimensional nonlinear medium modeled by the nonlinear Schrödinger equation. Devillard and Souillard have shown that almost every time-harmonic solution of this random PDE exhibits localization. We consider the temporal stability of such time-harmonic solutions and derive bounds on the location of any unstable eigenvalues. By direct numerical determination of the eigenvalues we show that these time-harmonic solutions are typically unstable, and find the distribution of eigenvalues in the complex plane. The distributions are distinctly different for focusing and defocusing nonlinearities. We argue further that these instabilities are connected with resonances in a Schrödinger problem, and interpret the earlier numerical simulations of Caputo, Newell, and Shelley, and of Shelley in terms of these instabilities. Finally, in the defocusing case we are able to construct a family of asymptotic solutions which includes the stable limiting time-harmonic state observed in the simulations of Shelley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Absence of Diffusion in Certain Random Lattices,Phys. Rev. 109:1492 (1958).

    Article  ADS  Google Scholar 

  2. J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy,Comm. Math. Phys. 88:151–184 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. F. Martinelli and E. Scoppola, Remark on the absence of absolutely continuous spectrum for d-dimensional Schrödinger operator with random potential for large disorder or low energy,Comm. Math. Phys. 97:465–471 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S. Molchanov and M. Aizenmann, Localization for Large Energy/Disorder: Elementary Derivation. Preprint (1993).

  5. R. Carmona and Lacroix,Spectral Theory of Random Schrödinger Operators, Probability and its Applications (Birkhauser, 1990).

  6. L. Pastur and A. Figotin,Spectra of Random and Almost Periodic Operators (Springer-Verlag, 1992).

  7. B. Derrida and E. Gardner, Lyapunov Exponent of the One Dimensional Anderson Model,J. Physique 45:15–21 (1984).

    MathSciNet  Google Scholar 

  8. B. Doucot and R. Rammal, Invariant Imbedding approach to Localization I, II,J. Physique 48:509 (1987)

    Article  Google Scholar 

  9. M. Shelley J. Caputo, and A. Newell, Nonlinear Wave Propagation through a Random Medium and Soliton Tunneling,Proceedings on the Conference on Non-integrability, Ile D’Oleron, pp. 49–64, 1988.

  10. B. Souillard and P. Devillard, Polynomially Decaying Transmission for the Nonlinear Schrödinger Equation in a Random Medium,J. Stat. Phys. 43:423–439 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. B. White R. Knapp, and G. Papanicolaou, Transmission of Waves by a Nonlinear Medium,J. Stat. Phys. 63(4):567–584 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Doucot and R. Rammal, On Anderson Localization in a Nonlinear Random Medium,Europhys. Lett. 3:969 (1987).

    Article  ADS  Google Scholar 

  13. T. Spencer J. Fröhlich, and C. E. Wayne, Localization in Disordered, Nonlinear Dynamical Systems,J. Stat. Phys. 42:247 (1986).

    Article  ADS  MATH  Google Scholar 

  14. S. A. Gredeskul and Y. S. Kivshar, Propagation and Scattering of Nonlinear Waves in Disordered Systems,Physics Report 216(1):1–61 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. He and J. D. Maynard, Detailed Measurements of Inelastic Scattering in Anderson Localization,Phys. Rev. Lett. 57(25):3171–3174 (1986).

    Article  ADS  Google Scholar 

  16. J. Bronski,Aspects of Randomness in Nonlinear Wave Propagation, Thesis (Princeton University, 1994).

  17. R. Knapp G. Papanicolaou, and B. White, Nonlinearity and Localization in One Dimensional Random Media, InDisorder and Nonlinearity, pp. 2–26.

  18. M. J. Shelley, Wave Propagation in the Random NLS Equation, in preparation (1994).

  19. V. I. Oseledec, A. Multiplicative Ergodic Theorem: Lyapunov Characteristic Numbers for Dynamical Systems,Trans. Moscow Math. Soc. 19:197–231 (1968).

    MathSciNet  Google Scholar 

  20. M. Ablowitz and J. Ladik, Non-linear Differential-Difference Equations and Fourier Analysis,J. Math. Phys. 17:1011 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. P. G. Drazin and W. H. Reid,Hydrodynamic Stability, Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, New York, 1981).

    MATH  Google Scholar 

  22. R. Pego and M. Weinstein, Eigenvalues, and Instabilities of Solitary Waves,Phil. Trans. R. Soc. Lond. A340:47–94 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  23. M. C. Reed and B. Simon,Methods of Modern Mathematical Physics (Academic Press, New York, 1980).

    MATH  Google Scholar 

  24. A. R. Bishop, D. W. McLaughlin, and E. A. Overman II, Coherence and Chaos in the Driven Damped Sine Gordon Equation,Physica D. 19 (1986).

  25. A. R. Bishop, M. G. Forest, D. W. McLaughlin, and E. A. Overman II, A Quasiperiodic Route to Chaos in a Near Integrable PDE,Physica D. 23:293 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D. W. McLaughlin and E. A. Overman II, Whiskered Tori for Integrable Pde’s; Chaotic Behavior in Near Integrable Pde’s,Surveys in Applied Math. 1:83–200 (1995).

    MathSciNet  Google Scholar 

  27. A. Bourlioux, A. Majda, and V. Roytburd, Theoretical and Numerical Structure for Unstable One-Dimensional Detonations,SIAM J. Appl. Math. 51(2):303 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Y. G. Oh, On Positive Multi-Lump Bound States of NLS Equations Under Multiple Well Potential,Comm. Math. Phys. 131:223–253 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A. Floer and A. Weinstein, Nonspreading Wave Packets for the Cubic Schroedinger Equation with a Bounded Potential,Journal of Functional Analysis 69:397–408 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Rose and M. Weinstein, On the Bound States of the NLS Equation with a Linear Potential,Physica D 30:207–218 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J.C., McLaughlin, D.W. & Shelley, M.J. On the stability of time-harmonic localized states in a disordered nonlinear medium. J Stat Phys 88, 1077–1115 (1997). https://doi.org/10.1007/BF02732426

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732426

Key Words

Navigation