Skip to main content
Log in

Construction and implementation of general linear methods for ordinary differential equations: A review

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It it the purpose of this paper to review the results on the construction and implementation of diagonally implicit multistage integration methods for ordinary differential equations. The systematic approach to the construction of these methods with Runge-Kutta stability is described. The estimation of local discretization error for both explicit and implicit methods is discussed. The other implementations issues such as the construction of continuous extensions, stepsize and order changing strategy, and solving the systems of nonlinear equations which arise in implicit schemes are also addressed. The performance of experimental codes based on these methods is briefly discussed and compared with codes from Matlab ordinary differential equation (ODE) suite. The recent work on general linear methods with inherent Runge-Kutta stability is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butcher, J. C. (1987).The Numerical Analysis of Ordinary Differential Equations, John Wiley, Chichester, New York.

    MATH  Google Scholar 

  2. Butcher, J. C. (2003).Numerical Methods for Ordinary Differential Equations, John Wiley, Chichester.

    MATH  Google Scholar 

  3. Butcher, J. C. (1993). Diagonally-implicit multi-stage integration methods.Appl. Numer. Math. 11, 347–363.

    Article  MATH  MathSciNet  Google Scholar 

  4. Butcher, J. C. (1994). A transformation for the analysis of DIMSIMs.BIT 34, 25–32.

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher, J. C. (2001). General linear methods for stiff differential equations.BIT 41, 193–221.

    Google Scholar 

  6. Butcher, J. C., Chartier, P., and Jackiewicz, Z. (1997). Nordsieck representation of DIMSIMs.Numer. Algorithms 16, 209–230.

    Article  MATH  MathSciNet  Google Scholar 

  7. Butcher, J. C., Chartier, P., and Jackiewicz, Z. (1999). Experiments with a variable-order type 1 DIMSIM code.Numer. Algorithms 22, 237–261.

    Article  MATH  MathSciNet  Google Scholar 

  8. Butcher, J. C., and Jackiewicz, Z. (1993). Diagonally implicit general linear methods for ordinary differential equations.BIT 33, 452–472.

    Article  MATH  MathSciNet  Google Scholar 

  9. Butcher, J. C., and Jackiewicz, Z. (1996). Construction of diagonally implicit general linear methods of type 1 and 2 for ordinary differential equations.Appl. Numer. Math. 21, 385–415.

    Article  MATH  MathSciNet  Google Scholar 

  10. Butcher, J. C., and Jackiewicz, Z. (1997). Implementation of diagonally implicit multistage integration methods for ordinary differential equations.SIAM J. Numer. Anal. 34, 2119–2141.

    Article  MATH  MathSciNet  Google Scholar 

  11. Butcher, J. C., and Jackiewicz, Z. (1998). Construction of high order diagonally implicit multistage integration methods for ordinary differential equations.Appl. Numer. Math. 27, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  12. Butcher, J. C., and Jackiewicz, Z. (2001). A reliable error estimation for DIMSIMs.BIT 41, 656–665.

    Article  MATH  MathSciNet  Google Scholar 

  13. Butcher, J. C., and Jackiewicz, Z. (2002). Error estimation for Nordsieck methods.Numer. Algorithms 31, 75–85.

    Article  MATH  MathSciNet  Google Scholar 

  14. Butcher, J. C., and Jackiewicz, Z. (2003). A new approach to error estimation for general linear methods.Numer. Math. 95, 487–502.

    Article  MATH  MathSciNet  Google Scholar 

  15. Butcher, J. C., and Jackiewicz, Z. (2004) Construction of general linear methods with Runge-Kutta stability properties.Numer. Algorithms 36, 53–72.

    Article  MATH  MathSciNet  Google Scholar 

  16. Butcher, J. C., and Jackiewicz, Z. (2004) Unconditionally stable general linear methods for ordinary differential equationsBIT.44, 557–570.

    Article  MATH  MathSciNet  Google Scholar 

  17. Butcher, J. C., Jackiewicz, Z., and Mittelmann, H. D. (1997). A nonlinear optimization approach to the construction of general linear methods of high order.J. Comp. Appl. Math. 81, 181–196.

    Article  MATH  MathSciNet  Google Scholar 

  18. Butcher, J. C., Jackiewicz, Z., and Wright, W. M. Error propagation for general linear methods, in preparation.

  19. Butcher, J. C., and Wright, W. M. (2003) The construction of practical general linear methodsBIT.43, 695–721.

    Article  MATH  MathSciNet  Google Scholar 

  20. Chartier, P. (1998). The potential of parallel multi-value methods for the simulation of large real-life problems.CWI Quarterly 11, 7–32.

    MATH  MathSciNet  Google Scholar 

  21. Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). Algorithm 573, NL2SOL — An adaptive nonlinear least-squares algorithm.ACM Trans. Math. Software 7, 369–383.

    Article  Google Scholar 

  22. Dennis, J. E., and Schnabel, R. B. (1996)Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Society for Industrial and Applied Mathematics, Philadelphia.

    MATH  Google Scholar 

  23. Deuflhard, P., Fiedler, B., and Kunkel, P. (1987). Efficient numerical path following beyond critical points.SIAM J. Numer. Anal. 24, 912–927.

    Article  MATH  MathSciNet  Google Scholar 

  24. Gladwell, I., Shampine, L. F., and Brankin, R. W. (1987). Automatic selection of initial stepsize for an ODE solver.J. Comput. Appl. Math. 18, 175–192.

    Article  MATH  MathSciNet  Google Scholar 

  25. Hairer, E., Nørsett, S. P., and Wanner, G. (1993).Solving Ordinary Differential Equations Nonstiff, I., Problems, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  26. Hairer, E., and Wanner, G. (1996).Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  27. Jackiewicz, Z. (2000). Step-control stability for diagonally implicit multistage integration methods.New Zealand J. of Math. 29, 193–201.

    MATH  MathSciNet  Google Scholar 

  28. Jackiewicz, Z. (2002). Implementation of DIMSIMs for stiff differential systems.Appl. Numer. Math. 42, 251–267.

    Article  MATH  MathSciNet  Google Scholar 

  29. Jackiewicz, Z., and Mittelmann, H. D. (1999). Exploiting structure in the construction of DIMSIMs.J. Comp. Appl. Math. 107, 233–239.

    Article  MATH  MathSciNet  Google Scholar 

  30. Jackiewicz, Z., and Vermiglio, R. (1996). General linear methods with external stages of different orders.BIT 36, 688–712.

    Article  MATH  MathSciNet  Google Scholar 

  31. Jackiewicz, Z., Vermiglio, R., and Zennaro, M. (1995). Variable stepsize diagonally implicit multistage integration methods for ordinary differential equations.Appl. Numer. Math. 16, 343–367.

    Article  MATH  MathSciNet  Google Scholar 

  32. Rheinboldt, W. C., and Burkardt, J. V. (1983). A locally-parametrized continuation process.ACM Trans. Math. Software 9, 215–235.

    Article  MATH  MathSciNet  Google Scholar 

  33. Rheinboldt, W. C., and Burkardt, J. V. (1983). Algorithm 596: a program for a locally-parametrized continuation process.ACM Trans. Math. Software 9, 236–241.

    Article  MathSciNet  Google Scholar 

  34. Shampine, L. F. (1980). Implementation of implicit formulas for the solution of ODEs.SIAM J. Sci. Stat. Comput. 1, 103–118.

    Article  MATH  MathSciNet  Google Scholar 

  35. Shampine, L. F. (1994).Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, London.

    MATH  Google Scholar 

  36. Shampine, L. F., and Baca, L. S. (1984). Error estimators for stiff differential equations.J. Comput. Appl. Math. 11, 197–207.

    Article  MATH  MathSciNet  Google Scholar 

  37. Shampine, L. F., and Reichelt, M. W. (1997). The Matlab ODE suite.SIAM J. Sci. Comput. 18, 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  38. Söderlind, G. (1998). The automatic control in numerical integration.CWI Quarterly 11, 55–74.

    MATH  MathSciNet  Google Scholar 

  39. Söderlind, G. (2002). Automatic control and adaptive time-stepping.Numer. Algorithms 31, 281–310.

    Article  MATH  MathSciNet  Google Scholar 

  40. Söderlind, G. (2003). Digital filters in adaptive time-stepping.ACM Trans. Math. Software 29, 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  41. Van Wieren, J. (1997). Using diagonally implicit multistage integration methods for solving ordinary differential equations. Part 1: Introduction to explicit methods, Report NAWCWPNS TP 8340, Naval Air Warfare Center Weapons Division, China Lake.

  42. Van Wieren, J. (1997). Using diagonally implicit multistage integration methods for solving ordinary differential equations. Part 2: Implicit methods, Report NAWCWPNS TP 8356, Naval Air Warfare Center Weapons Division, China Lake.

  43. Watson, L. T., Billups, S. C., and Morgan, A. P. (1987). HOMPACK: a suite od codes for globally convergent homotopy algorithms.ACM Trans. Math. Software 13, 281–310.

    Article  MATH  MathSciNet  Google Scholar 

  44. Wright, W. M. (2001). The construction of an order 4 DIMSIMs for ordinary differential equations.Numer. Algorithms 26, 123–130.

    Article  MATH  MathSciNet  Google Scholar 

  45. Wright, W. M. (2002).General linear methods with inherent Runge-Kutta stability, Ph.D. thesis, The University of Auckland, New Zealand.

    Google Scholar 

  46. The PORT Mathematical Subroutine Library. (1984). 3rd ed., AT & T Laboratories, Murray Hill, NJ. The public part of this library is available at http://www.netlib.org/port/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jackiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackiewicz, Z. Construction and implementation of general linear methods for ordinary differential equations: A review. J Sci Comput 25, 29–49 (2005). https://doi.org/10.1007/BF02728981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728981

Key words

AMS subject classification

Navigation