Skip to main content
Log in

Nonparametric maximum likelihood estimation in a non locally compact setting

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Maximum likelihood estimation is considered in the context of infinite dimensional parameter spaces. It is shown that in some locally convex parameter spaces sequential compactness of the bounded sets ensures the existence of minimizers of objective functions and the consistency of maximum likelihood estimators in an appropriate topology. The theory is applied to revisit some classical problems of nonparametric maximum likelihood estimation, to study location parameters in Banach spaces, and finally to obtain Varadarajan’s theorem on the convergence of empirical measures in the form of a consistency result for a sequence of maximum likelihood estimators. Several parameter spaces sharing the crucial compactness property are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RA (1975) Sobolev spaces. Academic Press, New York

    MATH  Google Scholar 

  • Bahadur R (1967) Rates of convergence of estimates and test statistics. Ann. Math. Stat. 38:303–324

    MathSciNet  Google Scholar 

  • Brown LD, Purves R (1973) Measurable selection of extrema. Ann. Statist. 1, 5:902–912

    MATH  MathSciNet  Google Scholar 

  • Brown LD, Ewing GM, Reid WT (1954) The minimum of a certain definite integral suggested by the maximum likelihood estimate of a distribution function (Abstract). Bull. Amer. Soc. 60:535

    Google Scholar 

  • Diestel J (1984) Sequences and series in Banach spaces. Springer-Verlag, New York

    Google Scholar 

  • Dunford N, Schwartz JT (1957) Linear operators, part I: General theory. Interscience Publishers inc., New York

    Google Scholar 

  • Edwards RE (1965) Functional analysis, theory and applications. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  • Grenander U (1956) On the theory of mortality measurement, part II. Skand. Akt. 39:125–153

    MathSciNet  Google Scholar 

  • Grenander U (1981) Abstract inference. J. Wiley, New York

    MATH  Google Scholar 

  • Holmes RB (1975) Geometric functional analysis and its applications. Springer-Verlag, New York

    MATH  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann. Math. Statist. 35:73–101

    MathSciNet  Google Scholar 

  • Huber PJ (1967) The behavior of maximum likelihood estimates under non-standard conditions. Proc. Fifth Berkeley Symp. Math. Stat. Probab., Univ. Calif. Press 1:221–233

    MathSciNet  Google Scholar 

  • Kemperman JHB (1987) The median of a finite measure on a Banach space. In: Dodge (ed.) Statistical Data Analysis Based on theL 1-Norm and Related Methods. North-Holland, New York: 217–230

    Google Scholar 

  • Köthe G (1969) Topological vector spaces I. Springer Verlag, New York

    MATH  Google Scholar 

  • León CA, Massé J-C (1992) A counterexample on the existence of theL 1-median. Stat. Probab. Letters 13, 2:117–120

    Article  MATH  Google Scholar 

  • Marshall AW, Proschan F (1965) Maximum likelihood estimation for distributions with monotone failure rate. Ann. Math. Statist. 36:69–77

    MathSciNet  Google Scholar 

  • Parthasarathy KR (1967) Probability measures on metric spaces. Academic Press, New York

    MATH  Google Scholar 

  • Pełczyński A (1968) On Banach spaces containingL 1(μ). Studia Math. XXX:231–246

    Google Scholar 

  • Perlman MD (1972) On the strong consistency of approximate maximum likelihood estimates. Proc. Sixth Berkeley Symp. Math. Stat. Probab. 1, Univ. California Press:263–281

  • Pfanzagl J (1988) Consistency of maximum likelihood estimators for certain nonparametric families. In particular: Mixtures. J. Stat. Plan. Infer. 19:137–158

    Article  MATH  MathSciNet  Google Scholar 

  • Reiss RD (1973) On the measurability and consistency of maximum likelihood estimates for unimodal densities. Ann. Stat. 1, 5:888–901

    MATH  MathSciNet  Google Scholar 

  • Roberts AW, Varberg DA (1973) Convex functions. Academic Press, New York

    MATH  Google Scholar 

  • Rudin W (1973) Functional analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Schaefer HH (1967) Topological vector spaces. Macmillan, New York

    Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. J. Wiley, New York

    MATH  Google Scholar 

  • Wagner DA (1977) Survey of measurable selection theorems. SIAM J. Control Opt. 15:859–903

    Article  MATH  Google Scholar 

  • Wagner DA (1980) Survey of measurable selection theorems. An update. Lecture Notes in Math. 794, Springer-Verlag, New York:176–219

    Google Scholar 

  • Wang J-L (1985) Strong consistency of approximate maximum likelihood estimators with applications in nonparametrics. Ann. Stat. 13, 3:932–946

    MATH  Google Scholar 

  • Wegman EJ (1970) Maximum likelihood estimation of a unimodal density I, II. Ann. Math. Statist. 41:457–471, 2169–2174

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by grants from the National Sciences and Engineering Research Council of Canada and the Fonds FCAR de la Province de Québec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massé, JC. Nonparametric maximum likelihood estimation in a non locally compact setting. Metrika 46, 123–145 (1997). https://doi.org/10.1007/BF02717170

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717170

Key Words and Phrases

Navigation